Drought monitoring based on TIGGE and distributed hydrological model in Huaihe River Basin, China

2016 ◽  
Vol 553 ◽  
pp. 358-365 ◽  
Author(s):  
Junfang Zhao ◽  
Jingwen Xu ◽  
Xingmei Xie ◽  
Houquan Lu
Water ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2220
Author(s):  
Yimeng Sun ◽  
Xi Chen ◽  
Xi Chen ◽  
Liu Yang

The amount of water taken from groundwater for agricultural irrigation is often not observed, while hydrological models have been extensively proposed to investigate the irrigation dynamics and impacts in agricultural areas. In this work, we propose an agro-hydrological model that integrates agricultural irrigation with the traditional Xin’anjiang (XAJ) hydrological model. In particular, the proposed model incorporates the FAO guidelines on crop evapotranspiration into hydrological routing of water balance and flow fluxes in unsaturated and saturated zones. The model was used to calibrate the groundwater irrigation amounts in terms of both the observed river discharge and the groundwater depth in the Xuanwu plain area of the Huaihe River Basin in China. The calibration and sensitivity analyses were performed by the shuffled complex evolution (SCE-UA) method. This method can be applied to a single-objective optimization of model parameters, based on either the river discharge or the groundwater depth, or to a multi-objective optimization of model parameters based on both of these objectives. The results show that the multi-objective calibration is more efficient than the single-objective method for capturing dynamics of the river discharge and the groundwater depth. The estimated means of the annual groundwater withdrawal for wheat and maize irrigations were found to be about 140.5 mm and 13.7 mm, respectively. The correlation between the groundwater withdrawal and the change in groundwater depth during crop growing seasons demonstrated that the groundwater withdrawal is the dominant factor for the groundwater depth change in the river basin, particularly in the winter wheat season. Moreover, model simulations show that the combined effects of the reduced precipitation and the increased groundwater withdrawal would lead to a decrease of the average annual runoff and an increase of the average groundwater depth. These estimates can greatly help in understanding the irregular changes in the groundwater withdrawal and offer a quantitative basis for studying future groundwater demands in this area.


2001 ◽  
Vol 45 ◽  
pp. 127-132 ◽  
Author(s):  
Y. TACHIKAWA ◽  
T. KAWAKAMI ◽  
Y. ICHIKAWA ◽  
M. SHIIBA ◽  
K. TAKARA

Author(s):  
M. Yu ◽  
Q. Li ◽  
G. Lu ◽  
H. Wang ◽  
P. Li

Abstract. Accurate and reliable drought monitoring is of primary importance for drought mitigation and reduction of social-ecological vulnerability. The aim of the paper was to propose a short-term/long-term composited drought index (CDI) which could be widely used for drought monitoring and early warning in China. In the study, the upper Huaihe River basin above the Xixian gauge station, which has been hit by severe droughts frequently in recent decades, was selected as the case study site. The short-term CDI was developed by the Principle Component Analysis of the self-calibrating Palmer Drought Severity Index (sc-PDSI), the 1- and 3-month Standardized Precipitation Evapotranspiration Index (SPEI), Z Index (ZIND), the Soil Moisture Index (SMI) with the long-term CDI being formulated by use of the self-calibrating Palmer Hydrology Drought Index (sc-PHDI), the 6-, 12-, 18- and 24-month SPEI, the Standardized Streamflow Index (SSI), the SMI. The sc-PDSI, the PHDI, the ZIND, the SPEI on a monthly time scale were calculated based on the monthly air temperature and precipitation, and the monthly SMI and SSI were computed based on the simulated soil moisture and runoff by the distributed Xinanjiang model. The thresholds of the short-term/long-term CDI were determined according to frequency statistics of different drought indices. Finally, the feasibility of the two CDIs was investigated against the scPDSI, the SPEI and the historical drought records. The results revealed that the short-term/long-term CDI could capture the onset, severity, persistence of drought events very well with the former being better at identifying the dynamic evolution of drought condition while the latter better at judging the changing trend of drought over a long time period.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Meixiu Yu ◽  
Xiaolong Liu ◽  
Li Wei ◽  
Qiongfang Li ◽  
Jianyun Zhang ◽  
...  

Accurate and reliable drought monitoring is of primary importance for drought mitigation and reduction of social-ecological vulnerability. The aim of the paper was to propose a multiscale composited drought index (CDI) which could be widely used for drought monitoring and early warning in China. In the study, the upper Huaihe River basin above the Xixian gauge station, which has been hit by severe droughts frequently in recent decades, was selected as the case study site. The newly built short-term/long-term CDI comprehensively considered three natural forms of drought (meteorological, hydrological, and agricultural) by selection of different variables that are related to each drought type. The short-term/long-term CDI was developed using the Principle Component Analysis of related drought components. The thresholds of the short-term/long-term CDI were determined according to frequency statistics of different drought indices. Finally, the feasibility of the two CDI was investigated against the self-calibrating Palmer drought severity index, the standardized precipitation evapotranspiration index, and the historical drought records. The results revealed that the short-term/long-term CDI could capture the onset, severity, and persistence of drought events very well with the former being better at identifying the dynamic evolution of drought condition and the latter better at judging the changing trend of drought over a long time period.


Water ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1053
Author(s):  
Yuan Yao ◽  
Wei Qu ◽  
Jingxuan Lu ◽  
Hui Cheng ◽  
Zhiguo Pang ◽  
...  

The Coupled Model Intercomparison Project Phase 6 (CMIP6) provides more scenarios and reliable climate change results for improving the accuracy of future hydrological parameter change analysis. This study uses five CMIP6 global climate models (GCMs) to drive the variable infiltration capacity (VIC) model, and then simulates the hydrological response of the upper and middle Huaihe River Basin (UMHRB) under future shared socioeconomic pathway scenarios (SSPs). The results show that the five-GCM ensemble improves the simulation accuracy compared to a single model. The climate over the UMHRB likely becomes warmer. The general trend of future precipitation is projected to increase, and the increased rates are higher in spring and winter than in summer and autumn. Changes in annual evapotranspiration are basically consistent with precipitation, but seasonal evapotranspiration shows different changes (0–18%). The average annual runoff will increase in a wavelike manner, and the change patterns of runoff follow that of seasonal precipitation. Changes in soil moisture are not obvious, and the annual soil moisture increases slightly. In the intrayear process, soil moisture decreases slightly in autumn. The research results will enhance a more realistic understanding of the future hydrological response of the UMHRB and assist decision-makers in developing watershed flood risk-management measures and water and soil conservation plans.


Sign in / Sign up

Export Citation Format

Share Document