Interdecadal changes of summer aerosol pollution in the Yangtze River Basin of China, the relative influence of meteorological conditions and the relation to climate change

2018 ◽  
Vol 630 ◽  
pp. 46-52 ◽  
Author(s):  
Jizhi Wang ◽  
Xiaoye Zhang ◽  
Duo Li ◽  
Yuanqin Yang ◽  
Junting Zhong ◽  
...  
2020 ◽  
Vol 282-283 ◽  
pp. 107867 ◽  
Author(s):  
Xinxin Chen ◽  
Lunche Wang ◽  
Zigeng Niu ◽  
Ming Zhang ◽  
Chang'an Li ◽  
...  

2019 ◽  
Vol 11 (12) ◽  
pp. 1451
Author(s):  
Fengying Zhang ◽  
Zengxin Zhang ◽  
Rui Kong ◽  
Juan Chang ◽  
Jiaxi Tian ◽  
...  

Net Primary Productivity (NPP) is a basis of material and energy flows in terrestrial ecosystems, and it is also an important component in the research on carbon cycle and carbon budget. This paper evaluated the spatial distribution pattern and temporal change trends for forest NPP simulated by the LPJ (Lund-Potsdam-Jena) model and NDVI (normalized difference vegetation index) in the Yangtze River basin from 1982 to 2013. The results revealed that: (1) the spatial distribution of the forest NPP and NDVI in the Yangtze River basin has gradually decreased from the southeast coast to the northwest. The forest NPP and NDVI in the mid-lower Yangtze were higher than that of the upper Yangtze; (2) the forest NPP and NDVI in most areas of the Yangtze River basin were positively correlated with the temperature and precipitation. Moreover, the correlations among the temperature with the forest NPP and NDVI were stronger than that of correlations among precipitation with forest NPP and NDVI. Moreover, the extreme drought event in the year of 2004–2005 led the NPP to decrease in the middle and lower Yangtze River basin; (3) human activity such as major ecological projects would have a certain impact on the NPP and NDVI. The increase in forest areas from 2000 to 2010 was larger than that from 1990 to 2000. Moreover, the increasing rate for the NDVI was higher than that of NPP, especially after the year 2000, which indicates that the major ecological projects might have great impacts on the vegetation dynamics. Moreover, more attention should be paid on the joint impacts of human activity and climate change on terrestrial NPP and NDVI.


2019 ◽  
Vol 11 (4) ◽  
pp. 460 ◽  
Author(s):  
Lijie He ◽  
Aiwen Lin ◽  
Xinxin Chen ◽  
Hao Zhou ◽  
Zhigao Zhou ◽  
...  

A good understanding of how meteorological conditions exacerbate or mitigate air pollution is critical for developing robust emission reduction policies. Thus, based on a multiple linear regression (MLR) model in this study, the quantified impacts of six meteorological variables on PM2.5 (i.e., particle matter with diameter of 2.5 µm or less) and its major components were estimated over the Yangtze River Basin (YRB). The 38-year (1980–2017) daily PM2.5 and meteorological data were derived from the newly-released Modern-Era Retrospective Analysis and Research and Application, version 2 (MERRA-2) products. The MERRA-2 PM2.5 was underestimated compared with ground measurements, partly due to the bias in the MERRA-2 Aerosol Optical Depth (AOD) assimilation. An over-increasing trend in each PM2.5 component occurred for the whole study period; however, this has been curbed since 2007. The MLR model suggested that meteorological variability could explain up to 67% of the PM2.5 changes. PM2.5 was robustly anti-correlated with surface wind speed, precipitation and boundary layer height (BLH), but was positively correlated with temperature throughout the YRB. The relationship of relative humidity (RH) and total cloud cover with PM2.5 showed regional dependencies, with negative correlation in the Yangtze River Delta (YRD) and positive correlation in the other areas. In particular, PM2.5 was most sensitive to surface wind speed, and the sensitivity was approximately −2.42 µg m−3 m−1 s. This study highlighted the impact of meteorological conditions on PM2.5 growth, although it was much smaller than the anthropogenic emissions impact.


Sign in / Sign up

Export Citation Format

Share Document