scholarly journals Assessment of MERRA-2 Surface PM2.5 over the Yangtze River Basin: Ground-based Verification, Spatiotemporal Distribution and Meteorological Dependence

2019 ◽  
Vol 11 (4) ◽  
pp. 460 ◽  
Author(s):  
Lijie He ◽  
Aiwen Lin ◽  
Xinxin Chen ◽  
Hao Zhou ◽  
Zhigao Zhou ◽  
...  

A good understanding of how meteorological conditions exacerbate or mitigate air pollution is critical for developing robust emission reduction policies. Thus, based on a multiple linear regression (MLR) model in this study, the quantified impacts of six meteorological variables on PM2.5 (i.e., particle matter with diameter of 2.5 µm or less) and its major components were estimated over the Yangtze River Basin (YRB). The 38-year (1980–2017) daily PM2.5 and meteorological data were derived from the newly-released Modern-Era Retrospective Analysis and Research and Application, version 2 (MERRA-2) products. The MERRA-2 PM2.5 was underestimated compared with ground measurements, partly due to the bias in the MERRA-2 Aerosol Optical Depth (AOD) assimilation. An over-increasing trend in each PM2.5 component occurred for the whole study period; however, this has been curbed since 2007. The MLR model suggested that meteorological variability could explain up to 67% of the PM2.5 changes. PM2.5 was robustly anti-correlated with surface wind speed, precipitation and boundary layer height (BLH), but was positively correlated with temperature throughout the YRB. The relationship of relative humidity (RH) and total cloud cover with PM2.5 showed regional dependencies, with negative correlation in the Yangtze River Delta (YRD) and positive correlation in the other areas. In particular, PM2.5 was most sensitive to surface wind speed, and the sensitivity was approximately −2.42 µg m−3 m−1 s. This study highlighted the impact of meteorological conditions on PM2.5 growth, although it was much smaller than the anthropogenic emissions impact.

2011 ◽  
Vol 24 (16) ◽  
pp. 4494-4507 ◽  
Author(s):  
Yanjun Wang ◽  
Bo Liu ◽  
Buda Su ◽  
Jianqing Zhai ◽  
Marco Gemmer

Abstract Actual evaporation in the Yangtze River basin is calculated by the complementary relationship approach—that is, the advection–aridity (AA) model with parameter validation from 1961 to 2007—and simulated by the general circulation model (GCM) ECHAM5–Max Planck Institute Ocean Model (MPI-OM) from 1961 to 2000. Trends of annual and seasonal estimated actual evaporation and air temperature, net radiation, saturation vapor pressure deficit, wind speed, and precipitation are examined by the linear regression method and nonparametric Mann–Kendall test. The stepwise regression method is used to analyze the significance to reference evapotranspiration of independent variables. Results show that a significant decreasing trend in annual reference evaporation is caused by a significant decline in wind speed. The annual actual evaporation decreases in the upper and midlower Yangtze reaches; more significantly in the AA model [–9.3 mm (10 yr)−1] than in the GCM [−3.6 mm (10 yr)−1]. Significant negative trends are found in spring and autumn, but they show reverse trends in summer and winter within the two methods, which is caused by the different contributors to the seasonal actual evaporation in the two methods. Decreasing net radiation is the main contributor to annual and spring actual evaporation in the two methods. Decreasing precipitation and net radiation are the main contributors to decreasing autumn actual evaporation in the AA model and the GCM. Increasing net radiation and decreasing precipitation are the main contributors to summer and winter actual evaporation in the GCM. Decreasing net radiation and increasing precipitation are the main contributors to decreasing summer and increasing winter actual evaporation in the AA model.


Forests ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 731
Author(s):  
Zhuoqing Hao ◽  
Jixia Huang ◽  
Yantao Zhou ◽  
Guofei Fang

The Yangtze River Basin is among the river basins with the strongest strategic support and developmental power in China. As an invasive species, the pinewood nematode (PWN) Bursaphelenchus xylophilus has introduced a serious obstacle to the high-quality development of the economic and ecological synchronization of the Yangtze River Basin. This study analyses the occurrence and spread of pine wilt disease (PWD) with the aim of effectively managing and controlling the spread of PWD in the Yangtze River Basin. In this study, statistical data of PWD-affected areas in the Yangtze River Basin are used to analyse the occurrence and spread of PWD in the study area using spatiotemporal visualization analysis and spatiotemporal scanning statistics technology. From 2000 to 2018, PWD in the study area showed an “increasing-decreasing-increasing” trend, and PWD increased explosively in 2018. The spatial spread of PWD showed a “jumping propagation-multi-point outbreak-point to surface spread” pattern, moving west along the river. Important clusters were concentrated in the Jiangsu-Zhejiang area from 2000 to 2015, forming a cluster including Jiangsu and Zhejiang. Then, from 2015–2018, important clusters were concentrated in Chongqing. According to the spatiotemporal scanning results, PWD showed high aggregation in the four regions of Zhejiang, Chongqing, Hubei, and Jiangxi from 2000 to 2018. In the future, management systems for the prevention and treatment of PWD, including ecological restoration programs, will require more attention.


2021 ◽  
Vol 13 (15) ◽  
pp. 3023
Author(s):  
Jinghua Xiong ◽  
Shenglian Guo ◽  
Jiabo Yin ◽  
Lei Gu ◽  
Feng Xiong

Flooding is one of the most widespread and frequent weather-related hazards that has devastating impacts on the society and ecosystem. Monitoring flooding is a vital issue for water resources management, socioeconomic sustainable development, and maintaining life safety. By integrating multiple precipitation, evapotranspiration, and GRACE-Follow On (GRAFO) terrestrial water storage anomaly (TWSA) datasets, this study uses the water balance principle coupled with the CaMa-Flood hydrodynamic model to access the spatiotemporal discharge variations in the Yangtze River basin during the 2020 catastrophic flood. The results show that: (1) TWSA bias dominates the overall uncertainty in runoff at the basin scale, which is spatially governed by uncertainty in TWSA and precipitation; (2) spatially, a field significance at the 5% level is discovered for the correlations between GRAFO-based runoff and GLDAS results. The GRAFO-derived discharge series has a high correlation coefficient with either in situ observations and hydrological simulations for the Yangtze River basin, at the 0.01 significance level; (3) the GRAFO-derived discharge observes the flood peaks in July and August and the recession process in October 2020. Our developed approach provides an alternative way of monitoring large-scale extreme hydrological events with the latest GRAFO release and CaMa-Flood model.


2013 ◽  
Vol 116 (3-4) ◽  
pp. 447-461 ◽  
Author(s):  
Yongqin David Chen ◽  
Qiang Zhang ◽  
Mingzhong Xiao ◽  
Vijay P. Singh ◽  
Yee Leung ◽  
...  

2013 ◽  
Vol 17 (5) ◽  
pp. 1985-2000 ◽  
Author(s):  
Y. Huang ◽  
M. S. Salama ◽  
M. S. Krol ◽  
R. van der Velde ◽  
A. Y. Hoekstra ◽  
...  

Abstract. In this study, we analyze 32 yr of terrestrial water storage (TWS) data obtained from the Interim Reanalysis Data (ERA-Interim) and Noah model from the Global Land Data Assimilation System (GLDAS-Noah) for the period 1979 to 2010. The accuracy of these datasets is validated using 26 yr (1979–2004) of runoff data from the Yichang gauging station and comparing them with 32 yr of independent precipitation data obtained from the Global Precipitation Climatology Centre Full Data Reanalysis Version 6 (GPCC) and NOAA's PRECipitation REConstruction over Land (PREC/L). Spatial and temporal analysis of the TWS data shows that TWS in the Yangtze River basin has decreased significantly since the year 1998. The driest period in the basin occurred between 2005 and 2010, and particularly in the middle and lower Yangtze reaches. The TWS figures changed abruptly to persistently high negative anomalies in the middle and lower Yangtze reaches in 2004. The year 2006 is identified as major inflection point, at which the system starts exhibiting a persistent decrease in TWS. Comparing these TWS trends with independent precipitation datasets shows that the recent decrease in TWS can be attributed mainly to a decrease in the amount of precipitation. Our findings are based on observations and modeling datasets and confirm previous results based on gauging station datasets.


Sign in / Sign up

Export Citation Format

Share Document