Predicting wildlife road-crossing probability from roadkill data using occupancy-detection models

2018 ◽  
Vol 642 ◽  
pp. 629-637 ◽  
Author(s):  
Rodrigo A.L. Santos ◽  
Mário Mota-Ferreira ◽  
Ludmilla M.S. Aguiar ◽  
Fernando Ascensão
2018 ◽  
Vol 25 (1) ◽  
pp. 21-30
Author(s):  
Rokhana Faizah ◽  
Sri Wening ◽  
Abdul Razak Purba

Information of legitimacy of oil palm progenies is important to guaranty the quality and to control commercial seeds procedures. A true and legitimate cross will produce progeny which has a combination of their parent's allele. The information could be obtained early in the nursery stage through DNA fingerprinting analysis. Simple Sequence Repeats (SSR) is one of DNA markers used for DNA fingerprinting, since the marker system has advantages to acquire information of allele per individual in population and efficiency diverse allele of progeny and their parents. The aim of the research is to obtain legitimacy of 12 progenies analyzing in the oil palm nursery stage. Thirteen SSR markers were used to analyze 12 crossings number of oil palm. The genotypes data by alleles of SSR inferred and quantified using Gene Marker® Software version 2.4.0 Soft Genetics® LLC and analyzed based on Mendel's Law of Segregation. The result showed based on heredity pattern of progeny and their parent's allele that progenies H were indicated genetically derived from their known parents while progenies from A and G indicated as illegitimate crossing. Probability value for legitimacy of progenies of 9 other crosses has 0.031 and 0.5. Legitimacy analysis of progeny using SSR markers could be used to control the quality of crossing material and earlier selection in the oil palm nursery.


IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 35411-35430
Author(s):  
Ibrahim Yilmaz ◽  
Ambareen Siraj

2021 ◽  
pp. 1-13
Author(s):  
Nuzhat Fatema ◽  
Saeid Gholami Farkoush ◽  
Mashhood Hasan ◽  
H Malik

In this paper, a novel hybrid approach for deterministic and probabilistic occupancy detection is proposed with a novel heuristic optimization and Back-Propagation (BP) based algorithms. Generally, PB based neural network (BPNN) suffers with the optimal value of weight, bias, trapping problem in local minima and sluggish convergence rate. In this paper, the GSA (Gravitational Search Algorithm) is implemented as a new training technique for BPNN is order to enhance the performance of the BPNN algorithm by decreasing the problem of trapping in local minima, enhance the convergence rate and optimize the weight and bias value to reduce the overall error. The experimental results of BPNN with and without GSA are demonstrated and presented for fair comparison and adoptability. The demonstrated results show that BPNNGSA has outperformance for training and testing phase in form of enhancement of processing speed, convergence rate and avoiding the trapping problem of standard BPNN. The whole study is analyzed and demonstrated by using R language open access platform. The proposed approach is validated with different hidden-layer neurons for both experimental studies based on BPNN and BPNNGSA.


Sign in / Sign up

Export Citation Format

Share Document