Metal tolerance of arsenic-resistant bacteria and their ability to promote plant growth of Pteris vittata in Pb-contaminated soil

2019 ◽  
Vol 660 ◽  
pp. 18-24 ◽  
Author(s):  
Maria Manzoor ◽  
Rafia Abid ◽  
Bala Rathinasabapathi ◽  
Letuzia M. De Oliveira ◽  
Evandro da Silva ◽  
...  
Chemosphere ◽  
2016 ◽  
Vol 144 ◽  
pp. 1937-1942 ◽  
Author(s):  
Yong-He Han ◽  
Jing-Wei Fu ◽  
Yanshan Chen ◽  
Bala Rathinasabapathi ◽  
Lena Q. Ma

2012 ◽  
Vol 28 (2) ◽  
pp. 80-83 ◽  
Author(s):  
Nazmul Ahsan ◽  
Kashfia Faruque ◽  
Farah Shamma ◽  
Nazrul Islam ◽  
Anwarul A Akhand

The main objective of this work was to isolate arsenic resistant bacteria from contaminated soil, followed by screening for their ability to adsorb arsenic. Six bacterial isolates (S1 to S6) were obtained from arsenic contaminated soil samples and among these, five (S1, S2, S3, S5 and S6) were characterized as bacillus and the rest one (S4) was cocci depending on shape. All the isolates except S6 produced extracellular polymeric substances (EPS) in the culture medium and displayed arsenic adsorbing activities demonstrated by adsorption of around 90% from initial concentration of 1 mg/L sodium arsenite. To clarify the role of EPS, we killed the bacteria that produced EPS and used these killed bacteria to see whether they could still adsorb arsenic or not. We found that they could adsorb arsenic similarly like that of EPS produced live bacterial isolates. From the observation it is concluded that these isolates showed potentiality to adsorb arsenic and hence might be used for bioremediation of arsenic. DOI: http://dx.doi.org/10.3329/bjm.v28i2.11821 Bangladesh J Microbiol, Volume 28, Number 2, December 2011, pp 80-83


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1569
Author(s):  
Nosheen Akhtar ◽  
Noshin Ilyas ◽  
Humaira Yasmin ◽  
R. Z. Sayyed ◽  
Zuhair Hasnain ◽  
...  

Plant growth-promoting rhizobacteria (PGPR) mediate heavy metal tolerance and improve phytoextraction potential in plants. The present research was conducted to find the potential of bacterial strains in improving the growth and phytoextraction abilities of Brassica nigra (L.) K. Koch. in chromium contaminated soil. In this study, a total of 15 bacterial strains were isolated from heavy metal polluted soil and were screened for their heavy metal tolerance and plant growth promotion potential. The most efficient strain was identified by 16S rRNA gene sequencing and was identified as Bacillus cereus. The isolate also showed the potential to solubilize phosphate and synthesize siderophore, phytohormones (indole acetic acid, cytokinin, and abscisic acid), and osmolyte (proline and sugar) in chromium (Cr+3) supplemented medium. The results of the present study showed that chromium stress has negative effects on seed germination and plant growth in B. nigra while inoculation of B. cereus improved plant growth and reduced chromium toxicity. The increase in seed germination percentage, shoot length, and root length was 28.07%, 35.86%, 19.11% while the fresh and dry biomass of the plant increased by 48.00% and 62.16%, respectively, as compared to the uninoculated/control plants. The photosynthetic pigments were also improved by bacterial inoculation as compared to untreated stress-exposed plants, i.e., increase in chlorophyll a, chlorophyll b, chlorophyll a + b, and carotenoid was d 25.94%, 10.65%, 20.35%, and 44.30%, respectively. Bacterial inoculation also resulted in osmotic adjustment (proline 8.76% and sugar 28.71%) and maintained the membrane stability (51.39%) which was also indicated by reduced malondialdehyde content (59.53% decrease). The antioxidant enzyme activities were also improved to 35.90% (superoxide dismutase), 59.61% (peroxide), and 33.33% (catalase) in inoculated stress-exposed plants as compared to the control plants. B. cereus inoculation also improved the uptake, bioaccumulation, and translocation of Cr in the plant. Data showed that B. cereus also increased Cr content in the root (2.71-fold) and shoot (4.01-fold), its bioaccumulation (2.71-fold in root and 4.03-fold in the shoot) and translocation (40%) was also high in B. nigra. The data revealed that B. cereus is a multifarious PGPR that efficiently tolerates heavy metal ions (Cr+3) and it can be used to enhance the growth and phytoextraction potential of B. nigra in heavy metal contaminated soil.


2020 ◽  
Vol 63 (2) ◽  
pp. 169-179
Author(s):  
Carrie Siew Fang Sim ◽  
Yuen Lin Cheow ◽  
Si Ling Ng ◽  
Adeline Su Yien Ting

Five metal-tolerant endophytic isolates (Bipolaris sp. LF7, Diaporthe miriciae LF9, Trichoderma asperellum LF11, Phomopsis asparagi LF15, Saccharicola bicolor LF22), with known metal-tolerance attributes and biocontrol activities against Ganoderma boninense, were tested for growth-promoting activities independent of (in vitro) and associated with plants (height, weight, root mass and stem circumference) (in vivo). Results revealed that metal-tolerant endophytes did not significantly render benefit to host plants as plant growth was compromised by the presence of metals. Lower production of indole-acetic acid (0.74-21.77 μg mL-1), siderophores (8.82-90.26%), and deaminase activities of 1-aminocyclopropane carboxylic acid (3.00-69.2 μmol mg protein-1 hr-1) were observed.


2016 ◽  
Vol 61 (3) ◽  
pp. 247-256
Author(s):  
Vera Karlicic ◽  
Danka Radic ◽  
Jelena Jovicic-Petrovic ◽  
Blazo Lalevic ◽  
Ljubinko Jovanovic ◽  
...  

Plant growth promoting (PGP) bacteria and yeasts play an important role in bioremediation processes. Thirty bacterial and ten yeast isolates were obtained from PAH and PCB contaminated soil with an aim of determining the presence of PGP mechanisms (production of ammonia, indoleacetic acid, siderophores and solubilization of inorganic phosphate). As a result, three bacterial (Serratia liquefaciens, Micrococcus sp. and Serratia sp.) and two yeast isolates (Candida utilis and Candida tropicalis) were recognized as PGP strains. Among them, Serratia sp. showed the highest indole production (25.5 ?g/ml). Analyses of metal tolerance (Cu+2, Cr+6 and Ni+2) revealed that Serratia liquefaciens, Micrococcus sp., Serratia sp. and Candida tropicalis were capable to tolerate significant concentration of metals. As a result of this study several bacterial and yeast strains were attributed as potential plant growth promoters which can be applied in future remediation activities and environmental quality improvements.


Sign in / Sign up

Export Citation Format

Share Document