A novel hybrid concept for implementation in drinking water treatment targets micropollutant removal by combining membrane filtration with biodegradation

2019 ◽  
Vol 694 ◽  
pp. 133710 ◽  
Author(s):  
Ole Hylling ◽  
Mahdi Nikbakht Fini ◽  
Lea Ellegaard-Jensen ◽  
Jens Muff ◽  
Henrik Tækker Madsen ◽  
...  
2013 ◽  
Vol 47 (16) ◽  
pp. 5955-5976 ◽  
Author(s):  
Jessica Benner ◽  
Damian E. Helbling ◽  
Hans-Peter E. Kohler ◽  
Janneke Wittebol ◽  
Elena Kaiser ◽  
...  

2015 ◽  
Vol 13 (3) ◽  
pp. 879-896 ◽  
Author(s):  
S. Petterson ◽  
D. Roser ◽  
D. Deere

It is proposed that the next revision of the Australian Drinking Water Guidelines will include ‘health-based targets’, where the required level of potable water treatment quantitatively relates to the magnitude of source water pathogen concentrations. To quantify likely Cryptosporidium concentrations in southern Australian surface source waters, the databases for 25 metropolitan water supplies with good historical records, representing a range of catchment sizes, land use and climatic regions were mined. The distributions and uncertainty intervals for Cryptosporidium concentrations were characterized for each site. Then, treatment targets were quantified applying the framework recommended in the World Health Organization Guidelines for Drinking-Water Quality 2011. Based on total oocyst concentrations, and not factoring in genotype or physiological state information as it relates to infectivity for humans, the best estimates of the required level of treatment, expressed as log10 reduction values, ranged among the study sites from 1.4 to 6.1 log10. Challenges associated with relying on historical monitoring data for defining drinking water treatment requirements were identified. In addition, the importance of quantitative microbial risk assessment input assumptions on the quantified treatment targets was investigated, highlighting the need for selection of locally appropriate values.


Membranes ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 643
Author(s):  
Hongjian Yu ◽  
Weipeng Huang ◽  
Huachen Liu ◽  
Tian Li ◽  
Nianping Chi ◽  
...  

The combination of conventional and advanced water treatment is now widely used in drinking water treatment. However, membrane fouling is still the main obstacle to extend its application. In this study, the impact of the combination of coagulation and ultrafiltration (UF) membrane rotation on both fouling control and organic removal of macro (sodium alginate, SA) and micro organic matters (tannic acid, TA) was studied comprehensively to evaluate its applicability in drinking water treatment. The results indicated that membrane rotation could generate shear stress and vortex, thus effectively reducing membrane fouling of both SA and TA solutions, especially for macro SA organics. With additional coagulation, the membrane fouling could be further reduced through the aggregation of mediate and macro organic substances into flocs and elimination by membrane retention. For example, with the membrane rotation speed of 60 r/min, the permeate flux increased by 90% and the organic removal by 35% in SA solution, with 40 mg/L coagulant dosage, with an additional 70% increase of flux and 5% increment of organic removal to 80% obtained. However, too much shear stress could intensify the potential of fiber breakage at the potting, destroying the flocs and resulting in the reduction of permeate flux and deterioration of effluent quality. Finally, the combination of coagulation and membrane rotation would lead to the shaking of the cake layer, which is beneficial for fouling mitigation and prolongation of membrane filtration lifetime. This study provides useful information on applying the combined process of conventional coagulation and the hydrodynamic shear force for drinking water treatment, which can be further explored in the future.


2021 ◽  
Vol 755 ◽  
pp. 142658
Author(s):  
Haojie Ding ◽  
Jian Zhang ◽  
Huan He ◽  
Ying Zhu ◽  
Dionysios D. Dionysiou ◽  
...  

2015 ◽  
Vol 156 ◽  
pp. 165-174 ◽  
Author(s):  
Joao Mimoso ◽  
Wouter Pronk ◽  
Eberhard Morgenroth ◽  
Frederik Hammes

2013 ◽  
Vol 62 (7) ◽  
pp. 433-441 ◽  
Author(s):  
Jie Wang ◽  
Wenjin Liu ◽  
Hui Jia ◽  
Hongwei Zhang

2006 ◽  
Vol 6 (4) ◽  
pp. 89-98 ◽  
Author(s):  
A. Loi-Brügger ◽  
S. Panglisch ◽  
P. Buchta ◽  
K. Hattori ◽  
H. Yonekawa ◽  
...  

A new ceramic membrane has been designed by NGK Insulators Ltd., Japan, to compete in the drinking water treatment market. The IWW Water Centre, Germany, investigated the operational performance and economical feasibility of this ceramic membrane in a one year pilot study of direct river water treatment with the hybrid process of coagulation and microfiltration. The aim of this study was to investigate flux, recovery, and DOC retention performance and to determine optimum operating conditions of NGK's ceramic membrane filtration system with special regards to economical aspects. Temporarily, the performance of the ceramic membrane was challenged under adverse conditions. During pilot plant operation river water with turbidities between 3 and 100 FNU was treated. Membrane flux was increased stepwise from 80–300 l/m2h resulting in recoveries between 95.9 and 98.9%. A DOC removal between about 20–35% was achieved. The pilot study and the subsequent economical evaluation showed the potential to provide a reliable and cost competitive process option for water treatment. The robustness of the ceramic membrane filtration process makes it attractive for a broad range of water treatment applications and, due to low maintenance requirements, also suitable for drinking water treatment in developing countries.


Sign in / Sign up

Export Citation Format

Share Document