Ceramic membranes for direct river water treatment applying coagulation and microfiltration

2006 ◽  
Vol 6 (4) ◽  
pp. 89-98 ◽  
Author(s):  
A. Loi-Brügger ◽  
S. Panglisch ◽  
P. Buchta ◽  
K. Hattori ◽  
H. Yonekawa ◽  
...  

A new ceramic membrane has been designed by NGK Insulators Ltd., Japan, to compete in the drinking water treatment market. The IWW Water Centre, Germany, investigated the operational performance and economical feasibility of this ceramic membrane in a one year pilot study of direct river water treatment with the hybrid process of coagulation and microfiltration. The aim of this study was to investigate flux, recovery, and DOC retention performance and to determine optimum operating conditions of NGK's ceramic membrane filtration system with special regards to economical aspects. Temporarily, the performance of the ceramic membrane was challenged under adverse conditions. During pilot plant operation river water with turbidities between 3 and 100 FNU was treated. Membrane flux was increased stepwise from 80–300 l/m2h resulting in recoveries between 95.9 and 98.9%. A DOC removal between about 20–35% was achieved. The pilot study and the subsequent economical evaluation showed the potential to provide a reliable and cost competitive process option for water treatment. The robustness of the ceramic membrane filtration process makes it attractive for a broad range of water treatment applications and, due to low maintenance requirements, also suitable for drinking water treatment in developing countries.

2001 ◽  
Vol 1 (5-6) ◽  
pp. 207-214
Author(s):  
A. Brügger ◽  
K. Voßenkaul ◽  
T. Melin ◽  
R. Rautenbach ◽  
B. Golloing ◽  
...  

Membrane filtration allows safe retention of microorganisms when treating filter backwash water from conventional drinking water filters. The permeate of the membrane plant can thus be reused to produce drinking water. The benefits are a higher yield of the drinking water treatment plant and a minimised wastewater production. This paper discusses the results of a pilot study, cost data and full-scale operation experiences concerning the application of ultrafiltration to treat filter backwash water. The effectiveness of ultrafiltration was assessed with regard to flux, cost and permeate quality.


Catalysts ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 521
Author(s):  
Fernando J. Beltrán ◽  
Ana Rey ◽  
Olga Gimeno

Formation of disinfection byproducts (DBPs) in drinking water treatment (DWT) as a result of pathogen removal has always been an issue of special attention in the preparation of safe water. DBPs are formed by the action of oxidant-disinfectant chemicals, mainly chlorine derivatives (chlorine, hypochlorous acid, chloramines, etc.), that react with natural organic matter (NOM), mainly humic substances. DBPs are usually refractory to oxidation, mainly due to the presence of halogen compounds so that advanced oxidation processes (AOPs) are a recommended option to deal with their removal. In this work, the application of catalytic ozonation processes (with and without the simultaneous presence of radiation), moderately recent AOPs, for the removal of humic substances (NOM), also called DBPs precursors, and DBPs themselves is reviewed. First, a short history about the use of disinfectants in DWT, DBPs formation discovery and alternative oxidants used is presented. Then, sections are dedicated to conventional AOPs applied to remove DBPs and their precursors to finalize with the description of principal research achievements found in the literature about application of catalytic ozonation processes. In this sense, aspects such as operating conditions, reactors used, radiation sources applied in their case, kinetics and mechanisms are reviewed.


2018 ◽  
Vol 156 ◽  
pp. 03038 ◽  
Author(s):  
Reni Desmiarti ◽  
Ariadi Hazmi ◽  
Primas Emeraldi ◽  
Munas Martynis ◽  
Yenni Trianda ◽  
...  

Inductively coupled plasma system was used in drinking water treatment system to kill the microorganisms in water such as total coliforms (TC), fecal coliforms (FC) and other coliforms (OC) from river water. The aim of this study was to investigate the effect of flowrate on removal efficiency (RE), death rate, and death yield and energy consumption of bacteria's. The frequency of the system was set at 4.6 MHz. The results show that the removal efficiencies and death rate of TC, FC and OC decreased with increasing flowrate. Compared to FC, the first-order reactions of TC and OC were lower in the following order: FC > OC > TC. The death yield of TC and OC significantly increased when the removal efficiency increased. The electromagnetic flux varied from 19.44 to 20.55 W/cm2 and the energy consumption was 0.26, 0.32, and 0.67 with flow rate at 20, 10 and 5 mL/minute, respectively. These results are very necessary to improve drinking water treatment.


2007 ◽  
Vol 29 (5) ◽  
pp. 317-323 ◽  
Author(s):  
Yishan Pei ◽  
Jianwei Yu ◽  
Zhaohai Guo ◽  
Yu Zhang ◽  
Min Yang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document