scholarly journals Application of Coagulation–Membrane Rotation to Improve Ultrafiltration Performance in Drinking Water Treatment

Membranes ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 643
Author(s):  
Hongjian Yu ◽  
Weipeng Huang ◽  
Huachen Liu ◽  
Tian Li ◽  
Nianping Chi ◽  
...  

The combination of conventional and advanced water treatment is now widely used in drinking water treatment. However, membrane fouling is still the main obstacle to extend its application. In this study, the impact of the combination of coagulation and ultrafiltration (UF) membrane rotation on both fouling control and organic removal of macro (sodium alginate, SA) and micro organic matters (tannic acid, TA) was studied comprehensively to evaluate its applicability in drinking water treatment. The results indicated that membrane rotation could generate shear stress and vortex, thus effectively reducing membrane fouling of both SA and TA solutions, especially for macro SA organics. With additional coagulation, the membrane fouling could be further reduced through the aggregation of mediate and macro organic substances into flocs and elimination by membrane retention. For example, with the membrane rotation speed of 60 r/min, the permeate flux increased by 90% and the organic removal by 35% in SA solution, with 40 mg/L coagulant dosage, with an additional 70% increase of flux and 5% increment of organic removal to 80% obtained. However, too much shear stress could intensify the potential of fiber breakage at the potting, destroying the flocs and resulting in the reduction of permeate flux and deterioration of effluent quality. Finally, the combination of coagulation and membrane rotation would lead to the shaking of the cake layer, which is beneficial for fouling mitigation and prolongation of membrane filtration lifetime. This study provides useful information on applying the combined process of conventional coagulation and the hydrodynamic shear force for drinking water treatment, which can be further explored in the future.

2020 ◽  
Vol 6 (11) ◽  
pp. 2993-3023
Author(s):  
Tyler A. Malkoske ◽  
Pierre R. Bérubé ◽  
Robert C. Andrews

Coagulation/flocculation has been grouped into three typical configurations and the impact of each examined in terms of floc properties and membrane fouling.


2012 ◽  
Vol 599 ◽  
pp. 335-339
Author(s):  
Fei Yun Sun ◽  
Wen Yi Dong ◽  
Xi Guo

Nanofiltration is a promising technology for water engineering. However, membrane fouling is the major bottleneck for NF application. In this paper, four typical methods, in the drinking water treatment trains, were comprehensively studied for their effectiveness as NF pretreatments, based on the organic removal improvement and membrane fouling mitigation. It was found that coagulation and UF had stably higher removal efficiencies of organic matters, whilst showed quite better fouling mitigation capabilities than the other methods. According to the analysis of total resistance changes in the NF membrane, coagulation could decrease the irreversible resistance to some extent, and improve the fouling recovery potential. Notwithstanding, the enhancement of nitrogen components by all pre-treatment methods were limited, indicating that further treatment would be necessary. This result herein was very useful to understand the NF process for drinking water treatment, as well to elevate the cost-effectiveness of NF application.


2019 ◽  
Vol 19 (8) ◽  
pp. 2330-2337
Author(s):  
Susumu Hasegawa ◽  
Yasuhiro Tanaka ◽  
Naokazu Wake ◽  
Ryosuke Takagi ◽  
Hideto Matsuyama

Abstract Recently, membrane filtration systems have become increasingly common in drinking water treatment plants. In this industry, preventing membrane fouling is of utmost importance. Many studies on the relationship between raw water components and membrane fouling have been performed in laboratory conditions. However, very few studies have analyzed the components of foulants on the fouled membrane as operated in actual drinking water treatment plants. By analyzing these components in plant-conditions, membrane fouling will be more effectively prevented. In this study, we analyzed the components of foulants extracted with 0.1 N NaOH from a fouled membrane operated in a drinking water treatment plant in Japan. Our analysis revealed that the main foulants were humic substances. In order to dissolve the accumulated humic substances, additional chemical cleaning was attempted with 500 ppm sodium hypochlorite. As a result, it was found that humic substances were dissolved and filtration resistance significantly decreased. Additionally, the removal of inorganic foulants was also greater after chemical cleaning with 500 ppm sodium hypochlorite, as inorganic foulants trapped within humic substances were released to the membrane surface as hydroxides by the additional sodium hypochlorite cleaning and were dissolved by the periodic citric acid cleaning.


Sign in / Sign up

Export Citation Format

Share Document