Is biological treatment a viable alternative for micropollutant removal in drinking water treatment processes?

2013 ◽  
Vol 47 (16) ◽  
pp. 5955-5976 ◽  
Author(s):  
Jessica Benner ◽  
Damian E. Helbling ◽  
Hans-Peter E. Kohler ◽  
Janneke Wittebol ◽  
Elena Kaiser ◽  
...  
2006 ◽  
Vol 6 (4) ◽  
pp. 17-25 ◽  
Author(s):  
A. Ried ◽  
J. Mielcke

The use of ozone and/or UV for water treatment processes is often a combination of an ozone and/or UV-step with additional treatment steps, e.g. biological treatment, flocculation, filtration and activated carbon. Therefore, it is necessary to develop an optimized combination of these different steps. This article will demonstrate the advantages presenting two examples for drinking water treatment and two examples for municipal wastewater treatment.


2015 ◽  
Vol 15 (3) ◽  
pp. 442-455 ◽  
Author(s):  
Yue Zhang ◽  
Xinhua Zhao ◽  
Xinbo Zhang ◽  
Sen Peng

In the past decades, natural organic matter (NOM), which is a complex heterogeneous mixture of organic materials that are commonly present in all surface, ground and soil waters, has had an adverse effect on drinking water treatment. The existence of NOM results in many problems in drinking water treatment processes, and the properties and amount of NOM can significantly affect the efficiency of these processes. NOM not only influences the water quality with respect to taste, color and odor problems, but it also reacts with disinfectants, increasing the amount of disinfection by-products. NOM can be removed from drinking water via several treatment processes, but different drinking water treatment processes have diverse influences on NOM removal and the safety of the drinking water. Several treatment options, including coagulation, adsorption, oxidation, membrane and biological treatment, have been widely used in drinking water purification processes. Therefore, it is of great importance to be able to study the influence of different treatment processes on NOM in raw waters. The present review focuses on the methods, including coagulation, adsorption, oxidation, membrane, biological treatment processes and the combination of different treatment processes, which are used for removing NOM from drinking water.


2009 ◽  
Vol 60 (3) ◽  
pp. 709-715 ◽  
Author(s):  
Kim van Schagen ◽  
Luuk Rietveld ◽  
Alex Veersma ◽  
Robert Babuška

Owing to the nature of the treatment processes, monitoring the processes based on individual online measurements is difficult or even impossible. However, the measurements (online and laboratory) can be combined with a priori process knowledge, using mathematical models, to objectively monitor the treatment processes and measurement devices. The pH measurement is a commonly used measurement at different stages in the drinking water treatment plant, although it is a unreliable instrument, requiring significant maintenance. It is shown that, using a grey-box model, it is possible to assess the measurement devices effectively, even if detailed information of the specific processes is unknown.


2009 ◽  
Vol 60 (4) ◽  
pp. 851-857 ◽  
Author(s):  
Gwy-Am Shin ◽  
Jung-Keun Lee ◽  
Karl G. Linden

There has been growing concern over human exposure to adenoviruses through drinking water due to their apparent high resistance to UV irradiation and the anticipated widespread use of ultraviolet (UV) disinfection in drinking water treatment processes. However, most inactivation studies on adenoviruses were performed using only one type of UV technology—low-pressure (LP) UV, and little is known about the effectiveness of different UV technologies such as medium- pressure (MP) UV or other polychromatic UV technologies. In this work, the kinetics and extent of inactivation of a human adenovirus (adenovirus 2 (Ad2)) by both monochromatic LP and polychromatic MP UV were evaluated to determine the effectiveness of these UV technologies on human adenoviruses. Inactivation of Ad2 by LP UV was very slow and only 0.87 and 2.17 log10 inactivation was achieved with UV doses of 30 and 90 mJ/cm2, respectively. However, inactivation of Ad2 by MP UV was much faster and 2.19 and 5.36 log10 inactivation was observed with the same UV doses (30 and 90 mJ/cm2, respectively). It appears that MP UV is more effective against Ad2 than LP UV and the enhanced effectiveness of MP UV on Ad2 is likely due to its ability to inhibit the repair process in UV-irradiated Ad2.


Sign in / Sign up

Export Citation Format

Share Document