Biodegradation of polypropylene by yellow mealworms (Tenebrio molitor) and superworms (Zophobas atratus) via gut-microbe-dependent depolymerization

2021 ◽  
Vol 756 ◽  
pp. 144087
Author(s):  
Shan-Shan Yang ◽  
Meng-Qi Ding ◽  
Lei He ◽  
Chun-Hong Zhang ◽  
Qing-Xiang Li ◽  
...  
Polymers ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 3539
Author(s):  
Shan Jiang ◽  
Tingting Su ◽  
Jingjing Zhao ◽  
Zhanyong Wang

Plastic waste pollution and its difficult degradation process have aroused widespread concern. Research has demonstrated that the larvae of Tenebrio molitor (yellow mealworm), Galleria mellonella (greater wax moth), and Zophobas atratus (superworm) possess a biodegradation ability for polystyrene (PS) within the gut microbiota of these organisms. In this study, the difference in PS degradation and the changes of the gut microbiota were compared before and after feeding PS. The results showed that superworm had the strongest PS consumption capacity and the highest survival rate during the 30 d experiment period. They all could degrade PS to different degrees. Superworm showed the highest ability to degrade PS into low-molecular-weight substances, while yellow mealworm depolymerized PS strongly by destroying the benzene ring. The changes of the intestinal microbiome caused by feeding PS showed that after ingesting PS, there was a decrease in community diversity in superworm and yellow mealworm, but an increase in greater wax moth. Meanwhile, Enterococcus and Enterobacteriaceae, found in all three species’ larvae upon 20 d of PS feeding, might play an important role in PS degradation. The results will provide more accurate PS degradation comparative data of the three species’ larvae and theoretical guidance for further research on the efficient PS biodegradations.


2018 ◽  
Vol 14 (1) ◽  
pp. 10-24
Author(s):  
V. N. Fursov ◽  
L. S. Cherney

Darkling beetle Zophobas atratus (Coleoptera, Tenebrionidae) is recorded here for the first time as a new species for the fauna of Ukraine. Detailed study on morphology of preimaginal stages and biology of this species recently introduced to Ukraine, is given here. Zophobas atratus is an important species being easily reared in laboratory cultures and widely distributed in North and South America, Europe, and Asia. Detailed descriptions of all life stages, including egg, young and older larvae, pupa and adult of Z. atratus are required for further taxonomical study of the genus Zophobas, which isn’t yet definitively established. New identification keys for adults and larvae of the genera of tribe Tenebrionini are presented here, based on a comparative analysis of the taxonomic characters of adults and larvae of Z. atratus and species from the genera Tenebrio and Neatus. Comparative analysis of morphology of larva of Z. atratus and larvae of the tribe Cteniopodini of close subfamily Alleculinae was conducted here. The subfamily Alleculinae previously had the rank of family Alleculidae, but our analysis confirmed the reliability of its current taxonomic position as subfamily. The study of morphology of larvae of 1st and 2nd instars of Z. atratus revealed that they are characterized by special taxonomic structures that are not characteristic for oldest instars of larvae of Z. atratus. These characters include absence of spines on caudal segment, presence of a set of 4 setae at posterior margin of tergites of prothorax, metathorax, and 1st to 8th abdominal segments, strongly convex 2nd antennal segment and sensory zone in the form of an open ring on its apex, and etc. Moreover, structure of antenna of larvae of Z. atratus is similar to that of oldest larvae of most species of darkling beetles of the fauna of Ukraine. The most distinctive features of Z. atratus are: sexual dimorphism in structure of clypeus of adults; filiform sclerotized antenna of larva with a continuous sensory zone at apex of 2nd segment, weakly developed 3rd segment; fusion of sclerotized pleurites of 1st–8th abdominal segments with their tergites; sexual dimorphism in structure of 9th abdominal segment of pupa, and presence of two hooks on apex of its appendages. The data of original study of features of life cycle of Z. atratus are given. The pictures and photos of details of morphology of egg, larvae, pupa and adult of Z. atratus are presented. It was recored that life cycle of Z. atratus from laying of egg to the emergence of adult continues from 169 up to 181 days. Adults lived maximum up to 206 days. Maturation of eggs in female after copulation continues 10-11 days. Stage of egg continues 7 days, larva – up to 151 days, including pre-pupal period from 6 to 22 days, pupa – from 8 to 21 days. Twelve larval stages of Z. atratus were recorded in laboratory culture.


2015 ◽  
Vol 44 (2) ◽  
pp. 200-207 ◽  
Author(s):  
Ji-Eun Lee ◽  
An-Jung Lee ◽  
Da-Eun Jo ◽  
Ju Hyeong Cho ◽  
Kumju Youn ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document