Zophobas atratus (Fabricius, 1775) – new genus and species of darkling beetles (Coleoptera, Tenebrionidae) for the fauna of Ukraine

2018 ◽  
Vol 14 (1) ◽  
pp. 10-24
Author(s):  
V. N. Fursov ◽  
L. S. Cherney

Darkling beetle Zophobas atratus (Coleoptera, Tenebrionidae) is recorded here for the first time as a new species for the fauna of Ukraine. Detailed study on morphology of preimaginal stages and biology of this species recently introduced to Ukraine, is given here. Zophobas atratus is an important species being easily reared in laboratory cultures and widely distributed in North and South America, Europe, and Asia. Detailed descriptions of all life stages, including egg, young and older larvae, pupa and adult of Z. atratus are required for further taxonomical study of the genus Zophobas, which isn’t yet definitively established. New identification keys for adults and larvae of the genera of tribe Tenebrionini are presented here, based on a comparative analysis of the taxonomic characters of adults and larvae of Z. atratus and species from the genera Tenebrio and Neatus. Comparative analysis of morphology of larva of Z. atratus and larvae of the tribe Cteniopodini of close subfamily Alleculinae was conducted here. The subfamily Alleculinae previously had the rank of family Alleculidae, but our analysis confirmed the reliability of its current taxonomic position as subfamily. The study of morphology of larvae of 1st and 2nd instars of Z. atratus revealed that they are characterized by special taxonomic structures that are not characteristic for oldest instars of larvae of Z. atratus. These characters include absence of spines on caudal segment, presence of a set of 4 setae at posterior margin of tergites of prothorax, metathorax, and 1st to 8th abdominal segments, strongly convex 2nd antennal segment and sensory zone in the form of an open ring on its apex, and etc. Moreover, structure of antenna of larvae of Z. atratus is similar to that of oldest larvae of most species of darkling beetles of the fauna of Ukraine. The most distinctive features of Z. atratus are: sexual dimorphism in structure of clypeus of adults; filiform sclerotized antenna of larva with a continuous sensory zone at apex of 2nd segment, weakly developed 3rd segment; fusion of sclerotized pleurites of 1st–8th abdominal segments with their tergites; sexual dimorphism in structure of 9th abdominal segment of pupa, and presence of two hooks on apex of its appendages. The data of original study of features of life cycle of Z. atratus are given. The pictures and photos of details of morphology of egg, larvae, pupa and adult of Z. atratus are presented. It was recored that life cycle of Z. atratus from laying of egg to the emergence of adult continues from 169 up to 181 days. Adults lived maximum up to 206 days. Maturation of eggs in female after copulation continues 10-11 days. Stage of egg continues 7 days, larva – up to 151 days, including pre-pupal period from 6 to 22 days, pupa – from 8 to 21 days. Twelve larval stages of Z. atratus were recorded in laboratory culture.

ENTOMON ◽  
2021 ◽  
Vol 46 (1) ◽  
pp. 81-86
Author(s):  
Mamata Deb ◽  
Dolly Kumar

The life cycle and season’s studies of Tribolium castaneum indicated that the most favourable season as monsoon (27±5<” C & 80±05 % RH) where they have completed their life cycle within 22 days. The most unfavourable season was the winter (15±3<” C & 35±05 % RH) where it extended till 45 days. Results showed the presence of seven larval instars in the life cycle of the beetle. Stereomicroscope was used to study the microscopic stages like eggs, sexual dimorphism of pupae and adults, morphometric of the beetle. This is the first compiled stereomicroscopic photographs of the life cycle of T. castaneum.


2021 ◽  
Vol 5 (2) ◽  
Author(s):  
Olivia M Gearner ◽  
Marcin J Kamiński ◽  
Kojun Kanda ◽  
Kali Swichtenberg ◽  
Aaron D Smith

Abstract Sepidiini is a speciose tribe of desert-inhabiting darkling beetles, which contains a number of poorly defined taxonomic groups and is in need of revision at all taxonomic levels. In this study, two previously unrecognized lineages were discovered, based on morphological traits, among the extremely speciose genera Psammodes Kirby, 1819 (164 species and subspecies) and Ocnodes Fåhraeus, 1870 (144 species and subspecies), namely the Psammodes spinosus species-group and Ocnodes humeralis species-group. In order to test their phylogenetic placement, a phylogeny of the tribe was reconstructed based on analyses of DNA sequences from six nonoverlapping genetic loci (CAD, wg, COI JP, COI BC, COII, and 28S) using Bayesian and maximum likelihood inference methods. The aforementioned, morphologically defined, species-groups were recovered as distinct and well-supported lineages within Molurina + Phanerotomeina and are interpreted as independent genera, respectively, Tibiocnodes Gearner & Kamiński gen. nov. and Tuberocnodes Gearner & Kamiński gen. nov. A new species, Tuberocnodes synhimboides Gearner & Kamiński sp. nov., is also described. Furthermore, as the recovered phylogenetic placement of Tibiocnodes and Tuberocnodes undermines the monophyly of Molurina and Phanerotomeina, an analysis of the available diagnostic characters for those subtribes is also performed. As a consequence, Phanerotomeina is considered as a synonym of the newly redefined Molurina sens. nov. Finally, spectrograms of vibrations produced by substrate tapping of two Molurina species, Toktokkus vialis (Burchell, 1822) and T. synhimboides, are presented.


Geosciences ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 313
Author(s):  
Shinya Inazumi ◽  
Sudip Shakya ◽  
Takahiro Komaki ◽  
Yasuharu Nakanishi

This study focused on the middle-pressure jet grouting method, which has a complicated development mechanism for the columnar soil-improved body, with the aim of establishing a computer-aided engineering (CAE) system that can simulate the performance on a computer. Furthermore, in order to confirm the effect of middle-pressure jet grouting with mechanical agitation and mixing, a comparative analysis was performed with different jet pressures, the development situation was visualized, and the performance of this method was evaluated. The results of MPS-CAE as one of the CAE systems showed that the cement slurry jet ratio in the planned improvement range, including the periphery of the mixing blade, by the middle-pressure jet grouting together with the mechanical agitation and mixing was increased and a high quality columnar soil-improved body was obtained. It is expected that the introduction of CAE will contribute to the visualization of the ground, and that CAE will be an effective tool for the visual management of construction for ground improvement and the maintenance of improved grounds during the life cycle of the ground-improvement method.


2004 ◽  
Vol 64 (2) ◽  
pp. 237-242 ◽  
Author(s):  
M. C. Lacerda ◽  
A. M. R. M. Ferreira ◽  
T. V. Zanuncio ◽  
J. C. Zanuncio ◽  
A. S. Bernardino ◽  
...  

Biological control has been reducing the use of chemical products against insect pests, specially predatory Pentatomidae. Species of this group can present high variations in their life cycle as a result of their diet. Thus, the objective of this research was to study nymph development and reproduction of Podisus distinctus (Stäl, 1860) (Heteroptera: Pentatomidae) fed on Bombyx mori L., 1758 (Lepidoptera: Bombycidae) larvae (T1), compared to those fed on Tenebrio molitor L., 1758 (Coleoptera: Tenebrionidae) (T2) and Musca domestica L., 1758 (Diptera: Muscidae) larvae (T3) at a temperature of 25 ± 0.5ºC, relative humidity of 70 ± 2%, and photophase of 12 h. Predators fed on B. mori showed duration of the nymph phase (18.68 ± 1.02) similar to those fed on T. molitor (18.32 ± 1.49). Pre-oviposition and oviposition periods and number of egg masses, besides eggs and nymphs per female, were higher with B. mori (5.83 ± 2.02; 15.00 ± 7.40; 8.42 ± 1.84; 296.69 ± 154.75; and 228.55 ± 141.04, respectively) while longevity of males and females of P. distinctus was 25.76 ± 16.15 and 35.00 ± 16.15 days with T. molitor, and 20.57 ± 13.60 and 23.46 ± 12.35 days with B. mori, respectively.


Sign in / Sign up

Export Citation Format

Share Document