Spatial patterns of Zn, Cd, and Pb isotopic compositions of ground and surface water in mine areas of South Korea reflecting isotopic fractionation during metal attenuation

2021 ◽  
Vol 779 ◽  
pp. 146453
Author(s):  
Duk-Min Kim ◽  
Man-Sik Choi ◽  
Seong-Taek Yun ◽  
Sungmoon Yoon ◽  
Jin-Soo Lee
1988 ◽  
Vol 25 (5) ◽  
pp. 701-709 ◽  
Author(s):  
A. E. Aksu ◽  
G. Vilks

Oxygen and carbon isotopic analyses have been performed on the tests of Planulina wuellerstorfi and three size fractions of sinistral Neogloboquadrina pachyderma recovered from 33 Arctic Ocean surface-sediment samples. Stable isotopic compositions of N. pachyderma are found to be dependent on the test size: larger specimens show considerable enrichment in both δ18O and δ18C. The difference between the isotopic compositions of the 63–125 and 125–250 μm size fractions in N. pachyderma can be explained by biogenic fractionation effects during foraminiferal test growth. Larger (250–500 μm) N. pachyderma displayed accretions of secondary calcite, i.e., the outermost shell contained significant amounts of inorganically precipitated magnesium calcite. Thus, larger foraminifera may not be suited for down-core stable isotopic studies. There is a difference of ~2‰ between δ18O values of surface samples from the eastern and western Arctic Ocean, reflecting large differences between surface-water salinity in these regions. Therefore, oxygen isotopic data may have limited use as a chronostratigraphic tool in down-core studies in the Arctic Ocean, but we can use them to infer past variations in surface-water salinities. Planulina wuellerstorfi also showed depletions of both δ18O and δ18C in its calcite tests relative to calcite precipitated in isotopic equilibrium with ambient sea water; these depletions ranged from −0.8 to −0.9‰ in δ18Oand −1.2 to −0.9‰ in δ18C. This taxon is found to deposit its shell very close to the δ18C of ΣCO2 of bottom waters.


2012 ◽  
Vol 84 (8) ◽  
pp. 635-645 ◽  
Author(s):  
Bum-Yeon Lee ◽  
Shin-Jeong Park ◽  
Ma. Cristina Paule ◽  
Woosong Jun ◽  
Chang-Hee Lee

2020 ◽  
Vol 105 (8) ◽  
pp. 1270-1274
Author(s):  
Francis M. McCubbin ◽  
Jessica J. Barnes

Abstract We conducted in situ Cl isotopic measurements of apatite within intercumulus regions and within a holocrystalline olivine-hosted melt inclusion in magnesian-suite troctolite 76535 from Apollo 17. These data were collected to place constraints on the Cl-isotopic composition of the last liquid to crystallize from the lunar magma ocean (i.e., urKREEP, named after its enrichments in incompatible lithophile trace elements like potassium, rare earth elements, and phosphorus). The apatite in the olivine-hosted melt inclusion and within the intercumulus regions of the sample yielded Cl-isotopic compositions of 28.3 ± 0.9‰ (2σ) and 30.3 ± 1.1‰ (2σ), respectively. The concordance of these values from both textural regimes we analyzed indicates that the Cl-isotopic composition of apatites in 76535 likely represents the Cl-isotopic composition of the KREEP-rich magnesian-suite magmas. Based on the age of 76535, these results imply that the KREEP reservoir attained a Cl-isotopic composition of 28–30‰ by at least 4.31 Ga, consistent with the onset of Cl-isotopic fractionation at the time of lunar magma ocean crystallization or shortly thereafter. Moreover, lunar samples that yield Cl-isotopic compositions higher than the value for KREEP are likely affected by secondary processes such as impacts and/or magmatic degassing. The presence of KREEP-rich olivine-hosted melt inclusions within one of the most pristine and ancient KREEP-rich rocks from the Moon provides a new opportunity to characterize the geochemistry of KREEP. In particular, a broader analysis of stable isotopic compositions of highly and moderately volatile elements could provide an unprecedented advancement in our characterization of the geochemical composition of the KREEP reservoir and of volatile-depletion processes during magma ocean crystallization, more broadly.


2011 ◽  
Vol 7 (2) ◽  
pp. 887-920 ◽  
Author(s):  
J. Xiao ◽  
Y. K. Xiao ◽  
C. Q. Liu ◽  
Z. D. Jin

Abstract. Experiments involving boron incorporation into brucite (Mg(OH)2) from magnesium-free artificial seawater with pH values ranging from 9.5 to 13.0 were carried out to better understand the incorporation behavior of boron into brucite. The results show that both concentration of boron in deposited brucite ([B]d) and its boron partition coefficient (Kd) between deposited brucite and final seawater are controlled by pH of the solution. The incorporation capacity of boron into brucite is much stronger than that into oxides and clay minerals. The isotopic compositions of boron in deposited brucite (δ11Bd) are higher than those in the associated artificial seawater (δ11Bisw) with fractionation factors ranging between 1.0177 and 1.0569, resulting from the preferential incorporation of B(OH)3 into brucite. Both boron adsorptions onto brucite and precipitation reaction of H3BO3 with brucite exist during deposition of brucite from artificial seawater. The simultaneous occurrence of both processes determines the boron concentration and isotopic fractionation of brucite. The isotopic fractionation behaviors and mechanisms of boron incorporated into brucite are different from those into carbonates. Furthermore, the isotopic compositions of boron in modern corals might be affected by the existence of brucite in madrepore and the preferential incorporation of B(OH)3 into brucite. An exploratory study for the influence of brucite on the boron isotopic composition in modern corals is justifiable.


Atmosphere ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1229
Author(s):  
Hyeryeong Jeong ◽  
Kongtae Ra

The pollution status of ten potentially toxic elements (PTEs), isotopic compositions (Cu, Zn, Pb), and the potential ecological risk posed by them were investigated in the PM10 fraction of road dust in Busan Metropolitan city, South Korea. Enrichment factors revealed extremely to strongly polluted levels of Sb, Cd, Zn, Pb, and Cu in the PM10 fraction of road dust, with Sb levels being the highest. Statistical analyses showed that the major cause for contamination with PTEs was non-exhaust traffic emissions such as tire and brake wear. Cu and Zn isotopic compositions of road dust were related to traffic-related emission sources such as brake and tires. Pb isotopic compositions were close to that of road paint, indicating that Pb was a different source from Cu and Zn in this study. No significant health risk was posed by the PTEs. Taking into account the total length of road in Busan, a high quantity of PTEs in road dust (PM10) can have serious deleterious effects on the atmospheric environment and ecosystems. The results of metal concentrations and isotopic compositions in road dust will help identify and manage atmospheric fine particle and coastal metal contamination derived from fine road dust.


Sign in / Sign up

Export Citation Format

Share Document