scholarly journals Boron isotope fractionation during brucite deposition from artificial seawater

2011 ◽  
Vol 7 (2) ◽  
pp. 887-920 ◽  
Author(s):  
J. Xiao ◽  
Y. K. Xiao ◽  
C. Q. Liu ◽  
Z. D. Jin

Abstract. Experiments involving boron incorporation into brucite (Mg(OH)2) from magnesium-free artificial seawater with pH values ranging from 9.5 to 13.0 were carried out to better understand the incorporation behavior of boron into brucite. The results show that both concentration of boron in deposited brucite ([B]d) and its boron partition coefficient (Kd) between deposited brucite and final seawater are controlled by pH of the solution. The incorporation capacity of boron into brucite is much stronger than that into oxides and clay minerals. The isotopic compositions of boron in deposited brucite (δ11Bd) are higher than those in the associated artificial seawater (δ11Bisw) with fractionation factors ranging between 1.0177 and 1.0569, resulting from the preferential incorporation of B(OH)3 into brucite. Both boron adsorptions onto brucite and precipitation reaction of H3BO3 with brucite exist during deposition of brucite from artificial seawater. The simultaneous occurrence of both processes determines the boron concentration and isotopic fractionation of brucite. The isotopic fractionation behaviors and mechanisms of boron incorporated into brucite are different from those into carbonates. Furthermore, the isotopic compositions of boron in modern corals might be affected by the existence of brucite in madrepore and the preferential incorporation of B(OH)3 into brucite. An exploratory study for the influence of brucite on the boron isotopic composition in modern corals is justifiable.

2011 ◽  
Vol 7 (3) ◽  
pp. 693-706 ◽  
Author(s):  
J. Xiao ◽  
Y. K. Xiao ◽  
C. Q. Liu ◽  
Z. D. Jin

Abstract. Experiments involving boron incorporation into brucite (Mg(OH)2) from magnesium-free artificial seawater with pH values ranging from 9.5 to 13.0 were carried out to better understand the incorporation behavior of boron into brucite and the influence of it on Mg/Ca-SST proxy and δ11B-pH proxy. The results show that both the concentration of boron in deposited brucite ([B]d) and its boron partition coefficient (Kd) between deposited brucite and final seawater are controlled by the pH of the solution. The incorporation capacity of boron into brucite is almost the same as that into corals, but much stronger than that into oxides and clay minerals. The isotopic compositions of boron in deposited brucite (δ11Bd) are higher than those in the associated artificial seawater (δ11Bisw) with fractionation factors ranging between 1.0177 and 1.0569, resulting from the preferential incorporation of B(OH)3 into brucite. Both boron adsorptions onto brucite and the precipitation reaction of H3BO3 with brucite exist during deposition of brucite from artificial seawater. The simultaneous occurrence of both processes determines the boron concentration and isotopic fractionation of brucite. The isotopic fractionation behaviors and mechanisms of boron incorporated into brucite are different from those into corals. The existence of brucite in corals can affect the δ11B and Mg/Ca in corals and influences the Mg/Ca-SST proxy and δ11B-pH proxy negatively. The relationship between δ11B and Mg/Ca in corals can be used to judge the existence of brucite in corals, which should provide a reliable method for better use of δ11B and Mg/Ca in corals to reconstruct paleo-marine environment.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Elaheh Lotfi-Kalahroodi ◽  
Anne-Catherine Pierson-Wickmann ◽  
Olivier Rouxel ◽  
Rémi Marsac ◽  
Martine Bouhnik-Le Coz ◽  
...  

AbstractAlthough redox reactions are recognized to fractionate iron (Fe) isotopes, the dominant mechanisms controlling the Fe isotope fractionation and notably the role of organic matter (OM) are still debated. Here, we demonstrate how binding to organic ligands governs Fe isotope fractionation beyond that arising from redox reactions. The reductive biodissolution of soil Fe(III) enriched the solution in light Fe isotopes, whereas, with the extended reduction, the preferential binding of heavy Fe isotopes to large biological organic ligands enriched the solution in heavy Fe isotopes. Under oxic conditions, the aggregation/sedimentation of Fe(III) nano-oxides with OM resulted in an initial enrichment of the solution in light Fe isotopes. However, heavy Fe isotopes progressively dominate the solution composition in response to their binding with large biologically-derived organic ligands. Confronted with field data, these results demonstrate that Fe isotope systematics in wetlands are controlled by the OM flux, masking Fe isotope fractionation arising from redox reactions. This work sheds light on an overseen aspect of Fe isotopic fractionation and calls for a reevaluation of the parameters controlling the Fe isotopes fractionation to clarify the interpretation of the Fe isotopic signature.


2008 ◽  
Vol 45 (sup6) ◽  
pp. 15-18 ◽  
Author(s):  
Toshiyuki Fujii ◽  
Satoshi Fukutani ◽  
Hajimu Yamana

2020 ◽  
Vol 105 (8) ◽  
pp. 1270-1274
Author(s):  
Francis M. McCubbin ◽  
Jessica J. Barnes

Abstract We conducted in situ Cl isotopic measurements of apatite within intercumulus regions and within a holocrystalline olivine-hosted melt inclusion in magnesian-suite troctolite 76535 from Apollo 17. These data were collected to place constraints on the Cl-isotopic composition of the last liquid to crystallize from the lunar magma ocean (i.e., urKREEP, named after its enrichments in incompatible lithophile trace elements like potassium, rare earth elements, and phosphorus). The apatite in the olivine-hosted melt inclusion and within the intercumulus regions of the sample yielded Cl-isotopic compositions of 28.3 ± 0.9‰ (2σ) and 30.3 ± 1.1‰ (2σ), respectively. The concordance of these values from both textural regimes we analyzed indicates that the Cl-isotopic composition of apatites in 76535 likely represents the Cl-isotopic composition of the KREEP-rich magnesian-suite magmas. Based on the age of 76535, these results imply that the KREEP reservoir attained a Cl-isotopic composition of 28–30‰ by at least 4.31 Ga, consistent with the onset of Cl-isotopic fractionation at the time of lunar magma ocean crystallization or shortly thereafter. Moreover, lunar samples that yield Cl-isotopic compositions higher than the value for KREEP are likely affected by secondary processes such as impacts and/or magmatic degassing. The presence of KREEP-rich olivine-hosted melt inclusions within one of the most pristine and ancient KREEP-rich rocks from the Moon provides a new opportunity to characterize the geochemistry of KREEP. In particular, a broader analysis of stable isotopic compositions of highly and moderately volatile elements could provide an unprecedented advancement in our characterization of the geochemical composition of the KREEP reservoir and of volatile-depletion processes during magma ocean crystallization, more broadly.


2019 ◽  
Vol 157 (7) ◽  
pp. 1144-1148
Author(s):  
Yingkui Xu ◽  
Dan Zhu ◽  
Xiongyao Li ◽  
Jianzhong Liu

AbstractLaboratory experiments have shown that thermal gradients in silicate melts can lead to isotopic fractionation; this is known as the Richter effect. However, it is perplexing that the Richter effect has not been documented in natural samples as thermal gradients commonly exist within natural igneous systems. To resolve this discrepancy, theoretical analysis and calculations were undertaken. We found that the Richter effect, commonly seen in experiments with wholly molten silicates, cannot be applied to natural systems because natural igneous samples are more likely to be formed out of partially molten magma and the presence of minerals adds complexity to the behaviour of the isotope. In this study, we consider two related diffusion-rate kinetic isotope effects that originate from chemical diffusion, which are absent from experiments with wholly molten samples. We performed detailed calculations for magnesium isotopes, and the results indicated that the Richter effect for magnesium isotopes is buffered by kinetic isotope effects and the total value of magnesium isotope fractionation can be zero or even undetectable. Our study provides a new understanding of isotopic behaviour during the processes of cooling and solidification in natural magmatic systems.


1980 ◽  
Vol 26 (10) ◽  
pp. 1173-1177 ◽  
Author(s):  
R. G. L. McCready ◽  
V. A. Grinenko ◽  
H. R. Krouse

Proteus vulgaris metabolized thiosulfate to H2S. The amount evolved and its sulfur isotope composition identified it solely with sulfane sulfur. In contrast. Salmonella heidelberg sequentially reduced the sulfane sulfur of S2O32− with slight enrichment of the evolved sulfide in 32S and then reduced the sulfonate sulfur of S2O32− with large isotopic selectivities and an inverse isotopic fractionation pattern. The inverse isotope fractionation pattern for the H2S derived from the sulfonate sulfur was almost identical to that observed during the reduction of high concentrations of sulfite by S. heidelberg.


Soil Research ◽  
1987 ◽  
Vol 25 (4) ◽  
pp. 377 ◽  
Author(s):  
PM Bloesch ◽  
LC Bell ◽  
JD Hughes

The effects of varying pH, concentration of boron, and competing anions on the adsorption of boron were examined. Boron adsorption initially increased with pH, peaked at approximately pH 8, and then declined. The presence of phosphate reduced adsorption over the pH range 5.2-10.6; the effect of sulfate was less than that of phosphate and ceased at about pH 7. The presence of mannitol caused virtually no difference in boron adsorption up to about pH 6, but reduced adsorption at higher values. The model by Bowden and coworkers was successful in describing both the charge characteristics of goethite in the absence of boron adsorption and the effects of pH and boron concentration on adsorption of the element. The best fit of the model was achieved when B(OH)4-, B3O3(OH)4-, B4O5(OH):- and B5O6(OH)4- were considered as the adsorbing species, although B(OH)4- and B4O5(OH)24- were predicted to be the major adsorbing ions. Boron adsorption was found to be reversible with respect to both concentration and pH. Elevated temperature increased the amount of desorption at both pH 6 and 8. The effect of mannitol on boron desorption mirrored the effect of the compound on adsorption of the element; there was no effect up to pH 6, but at higher pH values desorption was increased. The significance of the desorption data for soil testing for boron is discussed.


2018 ◽  
Vol 83 (2) ◽  
pp. 251-264 ◽  
Author(s):  
Sofia Sarri ◽  
Panagiotis Misaelides ◽  
Dimitrios Zamboulis ◽  
Jolanta Warchoł

The use of a polyethylenimine?epichlorohydrin resin for the boron removal from aqueous solutions (boron concentration: 100?5000 mg L-1) of non-adjusted and pre-adjusted pH (pHnat, pHinit 8.0, 9.0 and 10.0) aqueous solutions was investigated using a batch technique. The boron concentration in the solutions after sorption was determined photometrically. The results indicated that the pH-dependent boron uptake was related to the protonation/deprotonation of the surface functional groups of the resin and to the boron speciation in solutions of different pH values. The maximum boron sorption capacity observed in solutions of pH 9.0 was 55 mg g-1 exceeding the majority of other commercial or alternative sorbents. Five empirical adsorption equations (Freundlich, Langmuir, Redlich?Peterson, Langmuir?Freundlich and Toth) were applied to the modelling of the boron adsorption equilibrium. The modelling results identified the homogenous boron sorption from acidic and heterogeneous from alkaline solutions. At alkaline pH, the system non-ideality can originate either from the different binding mechanism or from the competitive sorption of different boron species. The homogenous type boron sorption from acidic solutions was further confirmed by kinetic studies


2021 ◽  
Author(s):  
Caroline Soderman ◽  
Oliver Shorttle ◽  
Simon Matthews ◽  
Helen Williams

The geochemistry of global mantle melts suggests that both mid-ocean ridge basalts (MORB) and ocean island basalts (OIB) sample lithological and temperature heterogeneities originating in both the upper and lower mantle. Recently, non-traditional stable isotopes have been suggested as a new tool to complement existing tracers of mantle heterogeneity (e.g., major and trace elements, radiogenic isotopes), because mineral- and redox-specific equilibrium stable isotope fractionation effects can link the stable isotope ratios of melts to their source mineralogy and melting degree. Here, we investigate five stable isotope systems (Mg-Ca-Fe-V-Cr) that have shown promise in models or natural samples as tracers of mantle temperature and/or lithological heterogeneity. We use a quantitative model, combining thermodynamically self-consistent mantle melting and equilibrium isotope fractionation models, to explore the behaviour of the isotope ratios of these elements during melting of three mantle lithologies (peridotite, and silica-excess and silica-deficient pyroxenites), responding to changes in mantle mineralogy, oxygen fugacity, temperature and pressure.We find that, given current analytical precision, the stable isotope systems examined here are not predicted to be sensitive to mantle potential temperature variations through equilibrium isotope fractionation processes. By contrast, source lithological heterogeneity is predicted to be detectable in some cases in the stable isotope ratios of erupted basalts, although generally only at proportions of > 10% MORB-like pyroxenite in the mantle source, given current analytical precision. Magnesium and Ca stable isotopes show most sensitivity to a garnet-bearing source lithology, and Fe and Cr stable isotopes are potentially sensitive to the presence of MORB-like pyroxenite in the mantle source, although the behaviour of Cr isotopes is comparatively under-constrained and requires further work to be applied with confidence to mantle melts. When comparing the magnitude and direction of predicted equilibrium isotopic fractionation of peridotite and pyroxenite melts to natural MORB and OIB data, we find that aspects of the natural data (including the mean Mg-Ca-Fe-V isotopic composition of MORB, the range of Mg-Ca isotopic compositions seen in MORB data, the mean Mg-Ca-Cr isotopic composition of OIB, and the range of Mg-V-Cr isotopic compositions in OIB data) can be matched by equilibrium isotope fractionation during partial melting of peridotite and pyroxenite sources -- with pyroxenite required even for some MORB data. However, even when considering analytical uncertainty on natural sample measurements, the range in stable isotope compositions seen across the global MORB and OIB datasets suggests that kinetic isotope fractionation, or processes modifying the isotopic composition of recycled crustal material such that it is distinct from MORB, may be required to explain all the natural data. We conclude that the five stable isotope systems considered here have potential to be powerful complementary tracers to other geochemical tracers of the source lithology of erupted basalts. However, continued improvements in analytical precision in conjunction with experimental and theoretical predictions of isotopic fractionation between mantle minerals and melts are required before these novel stable isotopes can be unambiguously used to understand source heterogeneity in erupted basalts.


Sign in / Sign up

Export Citation Format

Share Document