Algal blooms modulate organic matter remineralization in freshwater sediments: A new insight on priming effect

Author(s):  
Yarui Wang ◽  
Muhua Feng ◽  
Jianjun Wang ◽  
Xinfang Chen ◽  
Xiangchao Chen ◽  
...  
2018 ◽  
Author(s):  
Ye Huang ◽  
Bertrand Guenet ◽  
Philippe Ciais ◽  
Ivan A. Janssens ◽  
Jennifer L. Soong ◽  
...  

Abstract. The role of soil microorganisms in regulating soil organic matter (SOM) decomposition is of primary importance in the carbon cycle, and in particular in the context of global change. Modelling soil microbial community dynamics to simulate its impact on soil gaseous carbon (C) emissions and nitrogen (N) mineralization at large spatial scales is a recent research field with the potential to improve predictions of SOM responses to global climate change. We here present a SOM model called ORCHIMIC whose input data that are consistent with those of global vegetation models. The model simulates decomposition of SOM by explicitly accounting for enzyme production and distinguishing three different microbial functional groups: fresh organic matter (FOM) specialists, SOM specialists, and generalists, while implicitly also accounting for microbes that do not produce extracellular enzymes, i.e. cheaters. This ORCHIMIC model and two other organic matter decomposition models, CENTURY (based on first order kinetics and representative for the structure of most current global soil carbon models) and PRIM (with FOM accelerating the decomposition rate of SOM) were calibrated to reproduce the observed respiration fluxes from FOM and SOM and their possible interactions from incubation experiments of Blagodatskaya et al. (2014). Among the three models, ORCHIMIC was the only one that captured well both the temporal dynamics of the respiratory fluxes and the magnitude of the priming effect observed during the incubation experiment. ORCHIMIC also reproduced well the temporal dynamics of microbial biomass. We then applied different idealized changes to the model input data, i.e. a 5 K stepwise increase of temperature and/or a doubling of plant litter inputs. Under 5 K warming, ORCHIMIC predicted a 0.002 K−1 decrease in the C use efficiency (defined as the ratio of C allocated to microbial growth to the sum of C allocated to growth and respiration) and a 3 % loss of SOC. Under the double litter input scenario, ORCHIMIC predicted a doubling of microbial biomass, while SOC stock increased by less than 1 % due to the priming effect. This limited increase in SOC stock contrasted with the proportional increase in SOC stock as modelled by the conventional SOC decomposition model (CENTURY), which cannot reproduce the priming effect. If temperature increased by 5 K and litter input is doubled, the model predicted almost the same loss of SOC as when only temperature was increased. These tests suggest that the responses of SOC stock to warming and increasing input may differ a lot from those simulated by conventional SOC decomposition models, when microbial dynamics is included. The next step is to incorporate the ORCHIMIC model into a global vegetation model to perform simulations for representative sites and future scenarios.


Chemosphere ◽  
2021 ◽  
Vol 264 ◽  
pp. 128600
Author(s):  
Wan-E Zhuang ◽  
Wei Chen ◽  
Qiong Cheng ◽  
Liyang Yang

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Leiyi Chen ◽  
Li Liu ◽  
Shuqi Qin ◽  
Guibiao Yang ◽  
Kai Fang ◽  
...  

Abstract The modification of soil organic matter (SOM) decomposition by plant carbon (C) input (priming effect) represents a critical biogeochemical process that controls soil C dynamics. However, the patterns and drivers of the priming effect remain hidden, especially over broad geographic scales under various climate and soil conditions. By combining systematic field and laboratory analyses based on multiple analytical and statistical approaches, we explore the determinants of priming intensity along a 2200 km grassland transect on the Tibetan Plateau. Our results show that SOM stability characterized by chemical recalcitrance and physico-chemical protection explains more variance in the priming effect than plant, soil and microbial properties. High priming intensity (up to 137% of basal respiration) is associated with complex SOM chemical structures and low mineral-organic associations. The dependence of priming effect on SOM stabilization mechanisms should be considered in Earth System Models to accurately predict soil C dynamics under changing environments.


2018 ◽  
Vol 11 (6) ◽  
pp. 2111-2138 ◽  
Author(s):  
Ye Huang ◽  
Bertrand Guenet ◽  
Philippe Ciais ◽  
Ivan A. Janssens ◽  
Jennifer L. Soong ◽  
...  

Abstract. The role of soil microorganisms in regulating soil organic matter (SOM) decomposition is of primary importance in the carbon cycle, in particular in the context of global change. Modeling soil microbial community dynamics to simulate its impact on soil gaseous carbon (C) emissions and nitrogen (N) mineralization at large spatial scales is a recent research field with the potential to improve predictions of SOM responses to global climate change. In this study we present a SOM model called ORCHIMIC, which utilizes input data that are consistent with those of global vegetation models. ORCHIMIC simulates the decomposition of SOM by explicitly accounting for enzyme production and distinguishing three different microbial functional groups: fresh organic matter (FOM) specialists, SOM specialists, and generalists, while also implicitly accounting for microbes that do not produce extracellular enzymes, i.e., cheaters. ORCHIMIC and two other organic matter decomposition models, CENTURY (based on first-order kinetics and representative of the structure of most current global soil carbon models) and PRIM (with FOM accelerating the decomposition rate of SOM), were calibrated to reproduce the observed respiration fluxes of FOM and SOM from the incubation experiments of Blagodatskaya et al. (2014). Among the three models, ORCHIMIC was the only one that effectively captured both the temporal dynamics of the respiratory fluxes and the magnitude of the priming effect observed during the incubation experiment. ORCHIMIC also effectively reproduced the temporal dynamics of microbial biomass. We then applied different idealized changes to the model input data, i.e., a 5 K stepwise increase of temperature and/or a doubling of plant litter inputs. Under 5 K warming conditions, ORCHIMIC predicted a 0.002 K−1 decrease in the C use efficiency (defined as the ratio of C allocated to microbial growth to the sum of C allocated to growth and respiration) and a 3 % loss of SOC. Under the double litter input scenario, ORCHIMIC predicted a doubling of microbial biomass, while SOC stock increased by less than 1 % due to the priming effect. This limited increase in SOC stock contrasted with the proportional increase in SOC stock as modeled by the conventional SOC decomposition model (CENTURY), which can not reproduce the priming effect. If temperature increased by 5 K and litter input was doubled, ORCHIMIC predicted almost the same loss of SOC as when only temperature was increased. These tests suggest that the responses of SOC stock to warming and increasing input may differ considerably from those simulated by conventional SOC decomposition models when microbial dynamics are included. The next step is to incorporate the ORCHIMIC model into a global vegetation model to perform simulations for representative sites and future scenarios.


2003 ◽  
Vol 35 (6) ◽  
pp. 837-843 ◽  
Author(s):  
Sébastien Fontaine ◽  
André Mariotti ◽  
Luc Abbadie

Weed Science ◽  
1972 ◽  
Vol 20 (5) ◽  
pp. 492-497 ◽  
Author(s):  
Claude E. Boyd

Bacterial production of CO2from sucrose substrate increased growth of seven species of algae in CO2-limited laboratory cultures. Decomposition of organic matter in pond water also supplied enough CO2to support good algal growth in cultures deprived of other sources of CO2. Estimates of CO2production from decay of dissolved organic matter in six pond waters ranged from 0.32 to 3.53 mg/L per 24 hr. The carbonate-bicarbonate equilibrium system is a major source of CO2for algal photosynthesis. However, in waters of low or extremely high alkalinity, this system will not support high rates of photosynthesis. In such waters CO2from decomposition will stimulate photosynthesis. Decomposable organic compounds must be considered with nitrogen and phosphorus as factors responsible for accelerated eutrophication and nuisance algal blooms.


1980 ◽  
Vol 37 (3) ◽  
pp. 415-423 ◽  
Author(s):  
G. J. Brunskill ◽  
B. W. Graham ◽  
J. W. M. Rudd

Experiments were performed in tubes in Lake 303 at the Experimental Lakes Area to determine the effects of arsenate and arsenite on microbial degradation of organic matter, and to determine rates of reduction and oxidation of inorganic arsenic. Under winter ice, 40 μmol∙L−1 arsenate or arsenite inhibited microbial degradation of organic matter by 50%. Rates of oxidation of arsenite were about 2 μmol∙L−1∙d−1 under aerobic conditions, and rates of reduction of arsenate were about 1 μmol∙L−1∙d−1 under anaerobic conditions. During the ice-free season, arsenate and arsenite had little apparent effect upon rates of degradation of organic matter in lake tubes enriched with nutrients. Rates of formation of particulate phosphorus, and rates of planktonic uptake of dissolved phosphorus were depressed in the presence of arsenic. The observed rate of oxidation of arsenite in summer was similar to the winter value. Arsenate reduction rates ([Formula: see text]30 μmol∙L−1∙d−1) were very rapid under short periods of anaerobiosis. In the presence of large nutrient (N, P) concentrations, As did not inhibit the development of high algal biomass.Based on these experiments, we predict that addition of domestic sewage to arsenate-polluted Kam Lake (near Yellowknife, N.W.T.) will result in a state of restrained eutrophication. Degradation of organic matter will not be inhibited by As in summer, and dissolved phosphorus concentrations will remain high, due to As inhibition of P uptake by the plankton. During the summer, growth of algal blooms may be moderated by As, and more dissolved phosphorus will flow out of the lake to downstream waterbodies.Key words: arsenic, bacteria, algae, organic matter decomposition, eutrophication


2017 ◽  
Vol 14 (18) ◽  
pp. 4085-4099 ◽  
Author(s):  
Jianzhong Su ◽  
Minhan Dai ◽  
Biyan He ◽  
Lifang Wang ◽  
Jianping Gan ◽  
...  

Abstract. We assess the relative contributions of different sources of organic matter, marine vs. terrestrial, to oxygen consumption in an emerging hypoxic zone in the lower Pearl River Estuary (PRE), a large eutrophic estuary located in Southern China. Our cruise, conducted in July 2014, consisted of two legs before and after the passing of Typhoon Rammasun, which completely de-stratified the water column. The stratification recovered rapidly, within 1 day after the typhoon. We observed algal blooms in the upper layer of the water column and hypoxia underneath in bottom water during both legs. Repeat sampling at the initial hypoxic station showed severe oxygen depletion down to 30 µmol kg−1 before the typhoon and a clear drawdown of dissolved oxygen after the typhoon. Based on a three endmember mixing model and the mass balance of dissolved inorganic carbon and its isotopic composition, the δ13C of organic carbon remineralized in the hypoxic zone was −23.2 ± 1.1 ‰. We estimated that 65 ± 16 % of the oxygen-consuming organic matter was derived from marine sources, and the rest (35 ± 16 %) was derived from the continent. In contrast to a recently studied hypoxic zone in the East China Sea off the Changjiang Estuary where marine organic matter dominated oxygen consumption, here terrestrial organic matter significantly contributed to the formation and maintenance of hypoxia. How varying amounts of these organic matter sources drive oxygen consumption has important implications for better understanding hypoxia and its mitigation in bottom waters.


Sign in / Sign up

Export Citation Format

Share Document