scholarly journals ORCHIMIC (v1.0), a microbe-mediated model for soil organic matter decomposition

2018 ◽  
Vol 11 (6) ◽  
pp. 2111-2138 ◽  
Author(s):  
Ye Huang ◽  
Bertrand Guenet ◽  
Philippe Ciais ◽  
Ivan A. Janssens ◽  
Jennifer L. Soong ◽  
...  

Abstract. The role of soil microorganisms in regulating soil organic matter (SOM) decomposition is of primary importance in the carbon cycle, in particular in the context of global change. Modeling soil microbial community dynamics to simulate its impact on soil gaseous carbon (C) emissions and nitrogen (N) mineralization at large spatial scales is a recent research field with the potential to improve predictions of SOM responses to global climate change. In this study we present a SOM model called ORCHIMIC, which utilizes input data that are consistent with those of global vegetation models. ORCHIMIC simulates the decomposition of SOM by explicitly accounting for enzyme production and distinguishing three different microbial functional groups: fresh organic matter (FOM) specialists, SOM specialists, and generalists, while also implicitly accounting for microbes that do not produce extracellular enzymes, i.e., cheaters. ORCHIMIC and two other organic matter decomposition models, CENTURY (based on first-order kinetics and representative of the structure of most current global soil carbon models) and PRIM (with FOM accelerating the decomposition rate of SOM), were calibrated to reproduce the observed respiration fluxes of FOM and SOM from the incubation experiments of Blagodatskaya et al. (2014). Among the three models, ORCHIMIC was the only one that effectively captured both the temporal dynamics of the respiratory fluxes and the magnitude of the priming effect observed during the incubation experiment. ORCHIMIC also effectively reproduced the temporal dynamics of microbial biomass. We then applied different idealized changes to the model input data, i.e., a 5 K stepwise increase of temperature and/or a doubling of plant litter inputs. Under 5 K warming conditions, ORCHIMIC predicted a 0.002 K−1 decrease in the C use efficiency (defined as the ratio of C allocated to microbial growth to the sum of C allocated to growth and respiration) and a 3 % loss of SOC. Under the double litter input scenario, ORCHIMIC predicted a doubling of microbial biomass, while SOC stock increased by less than 1 % due to the priming effect. This limited increase in SOC stock contrasted with the proportional increase in SOC stock as modeled by the conventional SOC decomposition model (CENTURY), which can not reproduce the priming effect. If temperature increased by 5 K and litter input was doubled, ORCHIMIC predicted almost the same loss of SOC as when only temperature was increased. These tests suggest that the responses of SOC stock to warming and increasing input may differ considerably from those simulated by conventional SOC decomposition models when microbial dynamics are included. The next step is to incorporate the ORCHIMIC model into a global vegetation model to perform simulations for representative sites and future scenarios.

2018 ◽  
Author(s):  
Ye Huang ◽  
Bertrand Guenet ◽  
Philippe Ciais ◽  
Ivan A. Janssens ◽  
Jennifer L. Soong ◽  
...  

Abstract. The role of soil microorganisms in regulating soil organic matter (SOM) decomposition is of primary importance in the carbon cycle, and in particular in the context of global change. Modelling soil microbial community dynamics to simulate its impact on soil gaseous carbon (C) emissions and nitrogen (N) mineralization at large spatial scales is a recent research field with the potential to improve predictions of SOM responses to global climate change. We here present a SOM model called ORCHIMIC whose input data that are consistent with those of global vegetation models. The model simulates decomposition of SOM by explicitly accounting for enzyme production and distinguishing three different microbial functional groups: fresh organic matter (FOM) specialists, SOM specialists, and generalists, while implicitly also accounting for microbes that do not produce extracellular enzymes, i.e. cheaters. This ORCHIMIC model and two other organic matter decomposition models, CENTURY (based on first order kinetics and representative for the structure of most current global soil carbon models) and PRIM (with FOM accelerating the decomposition rate of SOM) were calibrated to reproduce the observed respiration fluxes from FOM and SOM and their possible interactions from incubation experiments of Blagodatskaya et al. (2014). Among the three models, ORCHIMIC was the only one that captured well both the temporal dynamics of the respiratory fluxes and the magnitude of the priming effect observed during the incubation experiment. ORCHIMIC also reproduced well the temporal dynamics of microbial biomass. We then applied different idealized changes to the model input data, i.e. a 5 K stepwise increase of temperature and/or a doubling of plant litter inputs. Under 5 K warming, ORCHIMIC predicted a 0.002 K−1 decrease in the C use efficiency (defined as the ratio of C allocated to microbial growth to the sum of C allocated to growth and respiration) and a 3 % loss of SOC. Under the double litter input scenario, ORCHIMIC predicted a doubling of microbial biomass, while SOC stock increased by less than 1 % due to the priming effect. This limited increase in SOC stock contrasted with the proportional increase in SOC stock as modelled by the conventional SOC decomposition model (CENTURY), which cannot reproduce the priming effect. If temperature increased by 5 K and litter input is doubled, the model predicted almost the same loss of SOC as when only temperature was increased. These tests suggest that the responses of SOC stock to warming and increasing input may differ a lot from those simulated by conventional SOC decomposition models, when microbial dynamics is included. The next step is to incorporate the ORCHIMIC model into a global vegetation model to perform simulations for representative sites and future scenarios.


2008 ◽  
Vol 5 (1) ◽  
pp. 163-190 ◽  
Author(s):  
T. Wutzler ◽  
M. Reichstein

Abstract. Decomposition of soil organic matter (SOM) is limited by both the available substrate and the active decomposer community. The understanding of this colimitation strongly affects the understanding of feedbacks of soil carbon to global warming and its consequences. This study compares different formulations of soil organic matter (SOM) decomposition. We compiled formulations from literature into groups according to the representation of decomposer biomass on the SOM decomposition rate a) non-explicit (substrate only), b) linear, and c) non-linear. By varying the SOM decomposition equation in a basic simplified decomposition model, we analyzed the following questions. Is the priming effect represented? Under which conditions is SOM accumulation limited? And, how does steady state SOM stocks scale with amount of fresh organic matter (FOM) litter inputs? While formulations (a) did not represent the priming effect, with formulations (b) steady state SOM stocks were independent of amount of litter input. Further, with several formulations (c) there was an offset of SOM that was not decomposed when no fresh OM was supplied. The finding that a part of the SOM is not decomposed on exhaust of FOM supply supports the hypothesis of carbon stabilization in deep soil by the absence of energy-rich fresh organic matter. Different representations of colimitation of decomposition by substrate and decomposers in SOM decomposition models resulted in qualitatively different long-term behaviour. A collaborative effort by modellers and experimentalists is required to identify appropriate and inappropriate formulations.


2008 ◽  
Vol 5 (3) ◽  
pp. 749-759 ◽  
Author(s):  
T. Wutzler ◽  
M. Reichstein

Abstract. Decomposition of soil organic matter (SOM) is limited by both the available substrate and the active decomposer community. The understanding of this colimitation strongly affects the understanding of feedbacks of soil carbon to global warming and its consequences. This study compares different formulations of soil organic matter (SOM) decomposition. We compiled formulations from literature into groups according to the representation of decomposer biomass on the SOM decomposition rate a) non-explicit (substrate only), b) linear, and c) non-linear. By varying the SOM decomposition equation in a basic simplified decomposition model, we analyzed the following questions. Is the priming effect represented? Under which conditions is SOM accumulation limited? And, how does steady state SOM stocks scale with amount of fresh organic matter (FOM) litter inputs? While formulations (a) did not represent the priming effect, with formulations (b) steady state SOM stocks were independent of amount of litter input. Further, with several formulations (c) there was an offset of SOM that was not decomposed when no fresh OM was supplied. The finding that a part of the SOM is not decomposed on exhaust of FOM supply supports the hypothesis of carbon stabilization in deep soil by the absence of energy-rich fresh organic matter. Different representations of colimitation of decomposition by substrate and decomposers in SOM decomposition models resulted in qualitatively different long-term behaviour. A collaborative effort by modellers and experimentalists is required to identify formulations that are more or less suitable to represent the most important drivers of long term carbon storage.


Author(s):  
K. Avarachen Mathew ◽  
Murat Van Ardelan ◽  
Susana Villa Gonzalez ◽  
Olav Vadstein ◽  
S. Vezhapparambu Veena ◽  
...  

Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1386
Author(s):  
Michael Stotter ◽  
Florian Wichern ◽  
Ralf Pude ◽  
Martin Hamer

Cultivation of Miscanthus x giganteus L. (Mis) with annual harvest of biomass could provide an additional C source for farmers. To test the potential of Mis-C for immobilizing inorganic N from slurry or manure and as a C source for soil organic matter build-up in comparison to wheat (Triticum aestivum L.) straw (WS), a greenhouse experiment was performed. Pot experiments with ryegrass (Lolium perenne L.) were set up to investigate the N dynamics of two organic fertilisers based on Mis at Campus Klein-Altendorf, Germany. The two fertilisers, a mixture of cattle slurry and Mis as well as cattle manure from Mis-bedding material resulted in a slightly higher N immobilisation. Especially at the 1st and 2nd harvest, they were partly significantly different compared with the WS treatments. The fertilisers based on Mis resulted in a slightly higher microbial biomass C and microbial biomass N and thus can be identified as an additional C source to prevent nitrogen losses and for the build-up of soil organic matter (SOM) in the long-term.


1993 ◽  
Vol 73 (1) ◽  
pp. 39-50 ◽  
Author(s):  
D. A. Angers ◽  
N. Bissonnette ◽  
A. Légère ◽  
N. Samson

Crop rotations and tillage practices can modify not only the total amount of organic matter (OM) in soils but also its composition. The objective of this study was to determine the changes in total organic C, microbial biomass C (MBC), carbohydrates and alkaline phosphatase activity induced by 4 yr of different rotation and tillage combinations on a Kamouraska clay in La Pocatière, Quebec. Two rotations (continuous barley (Hordeum vulgare L.) versus a 2-yr barley–red clover (Trifolium pratense L.) rotation) and three tillage treatments (moldboard plowing (MP), chisel plowing (CP) and no-tillage (NT)) were compared in a split-plot design. Total organic C was affected by the tillage treatments but not by the rotations. In the top soil layer (0–7.5 cm), NT and CP treatments had C contents 20% higher than the MP treatment. In the same soil layer, MBC averaged 300 mg C kg−1 in the MP treatment and up to 600 mg C kg−1 in the NT soil. Hot-water-extractable and acid-hydrolyzable carbohydrates were on average 40% greater under reduced tillage than under MP. Both carbohydrate fractions were also slightly larger in the rotation than in the soil under continuous barley. The ratios of MBC and carbohydrate C to total organic C suggested that there was a significant enrichment of the OM in labile forms as tillage intensity was reduced. Alkaline phosphatase activity was 50% higher under NT and 20% higher under CP treatments than under MP treatment and, on average, 15% larger in the rotation than in the continuous barley treatment. Overall, the management-induced differences were slightly greater in the top layer (0–7.5 cm) than in the lower layer of the Ap horizon (7.5–15 cm). All the properties measured were highly correlated with one another. They also showed significant temporal variations that were, in most cases, independent of the treatments. Four years of conservation tillage and, to a lesser extent, rotation with red clover resulted in greater OM in the top soil layer compared with the more intensive systems. This organic matter was enriched in labile forms. Key words: Soil management, soil quality, organic matter, carbohydrates, microbial biomass, phosphatase


Author(s):  
Yarui Wang ◽  
Muhua Feng ◽  
Jianjun Wang ◽  
Xinfang Chen ◽  
Xiangchao Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document