The priming effect of organic matter: a question of microbial competition?

2003 ◽  
Vol 35 (6) ◽  
pp. 837-843 ◽  
Author(s):  
Sébastien Fontaine ◽  
André Mariotti ◽  
Luc Abbadie
Author(s):  
Yarui Wang ◽  
Muhua Feng ◽  
Jianjun Wang ◽  
Xinfang Chen ◽  
Xiangchao Chen ◽  
...  

2018 ◽  
Author(s):  
Ye Huang ◽  
Bertrand Guenet ◽  
Philippe Ciais ◽  
Ivan A. Janssens ◽  
Jennifer L. Soong ◽  
...  

Abstract. The role of soil microorganisms in regulating soil organic matter (SOM) decomposition is of primary importance in the carbon cycle, and in particular in the context of global change. Modelling soil microbial community dynamics to simulate its impact on soil gaseous carbon (C) emissions and nitrogen (N) mineralization at large spatial scales is a recent research field with the potential to improve predictions of SOM responses to global climate change. We here present a SOM model called ORCHIMIC whose input data that are consistent with those of global vegetation models. The model simulates decomposition of SOM by explicitly accounting for enzyme production and distinguishing three different microbial functional groups: fresh organic matter (FOM) specialists, SOM specialists, and generalists, while implicitly also accounting for microbes that do not produce extracellular enzymes, i.e. cheaters. This ORCHIMIC model and two other organic matter decomposition models, CENTURY (based on first order kinetics and representative for the structure of most current global soil carbon models) and PRIM (with FOM accelerating the decomposition rate of SOM) were calibrated to reproduce the observed respiration fluxes from FOM and SOM and their possible interactions from incubation experiments of Blagodatskaya et al. (2014). Among the three models, ORCHIMIC was the only one that captured well both the temporal dynamics of the respiratory fluxes and the magnitude of the priming effect observed during the incubation experiment. ORCHIMIC also reproduced well the temporal dynamics of microbial biomass. We then applied different idealized changes to the model input data, i.e. a 5 K stepwise increase of temperature and/or a doubling of plant litter inputs. Under 5 K warming, ORCHIMIC predicted a 0.002 K−1 decrease in the C use efficiency (defined as the ratio of C allocated to microbial growth to the sum of C allocated to growth and respiration) and a 3 % loss of SOC. Under the double litter input scenario, ORCHIMIC predicted a doubling of microbial biomass, while SOC stock increased by less than 1 % due to the priming effect. This limited increase in SOC stock contrasted with the proportional increase in SOC stock as modelled by the conventional SOC decomposition model (CENTURY), which cannot reproduce the priming effect. If temperature increased by 5 K and litter input is doubled, the model predicted almost the same loss of SOC as when only temperature was increased. These tests suggest that the responses of SOC stock to warming and increasing input may differ a lot from those simulated by conventional SOC decomposition models, when microbial dynamics is included. The next step is to incorporate the ORCHIMIC model into a global vegetation model to perform simulations for representative sites and future scenarios.


Chemosphere ◽  
2021 ◽  
Vol 264 ◽  
pp. 128600
Author(s):  
Wan-E Zhuang ◽  
Wei Chen ◽  
Qiong Cheng ◽  
Liyang Yang

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Leiyi Chen ◽  
Li Liu ◽  
Shuqi Qin ◽  
Guibiao Yang ◽  
Kai Fang ◽  
...  

Abstract The modification of soil organic matter (SOM) decomposition by plant carbon (C) input (priming effect) represents a critical biogeochemical process that controls soil C dynamics. However, the patterns and drivers of the priming effect remain hidden, especially over broad geographic scales under various climate and soil conditions. By combining systematic field and laboratory analyses based on multiple analytical and statistical approaches, we explore the determinants of priming intensity along a 2200 km grassland transect on the Tibetan Plateau. Our results show that SOM stability characterized by chemical recalcitrance and physico-chemical protection explains more variance in the priming effect than plant, soil and microbial properties. High priming intensity (up to 137% of basal respiration) is associated with complex SOM chemical structures and low mineral-organic associations. The dependence of priming effect on SOM stabilization mechanisms should be considered in Earth System Models to accurately predict soil C dynamics under changing environments.


2018 ◽  
Vol 11 (6) ◽  
pp. 2111-2138 ◽  
Author(s):  
Ye Huang ◽  
Bertrand Guenet ◽  
Philippe Ciais ◽  
Ivan A. Janssens ◽  
Jennifer L. Soong ◽  
...  

Abstract. The role of soil microorganisms in regulating soil organic matter (SOM) decomposition is of primary importance in the carbon cycle, in particular in the context of global change. Modeling soil microbial community dynamics to simulate its impact on soil gaseous carbon (C) emissions and nitrogen (N) mineralization at large spatial scales is a recent research field with the potential to improve predictions of SOM responses to global climate change. In this study we present a SOM model called ORCHIMIC, which utilizes input data that are consistent with those of global vegetation models. ORCHIMIC simulates the decomposition of SOM by explicitly accounting for enzyme production and distinguishing three different microbial functional groups: fresh organic matter (FOM) specialists, SOM specialists, and generalists, while also implicitly accounting for microbes that do not produce extracellular enzymes, i.e., cheaters. ORCHIMIC and two other organic matter decomposition models, CENTURY (based on first-order kinetics and representative of the structure of most current global soil carbon models) and PRIM (with FOM accelerating the decomposition rate of SOM), were calibrated to reproduce the observed respiration fluxes of FOM and SOM from the incubation experiments of Blagodatskaya et al. (2014). Among the three models, ORCHIMIC was the only one that effectively captured both the temporal dynamics of the respiratory fluxes and the magnitude of the priming effect observed during the incubation experiment. ORCHIMIC also effectively reproduced the temporal dynamics of microbial biomass. We then applied different idealized changes to the model input data, i.e., a 5 K stepwise increase of temperature and/or a doubling of plant litter inputs. Under 5 K warming conditions, ORCHIMIC predicted a 0.002 K−1 decrease in the C use efficiency (defined as the ratio of C allocated to microbial growth to the sum of C allocated to growth and respiration) and a 3 % loss of SOC. Under the double litter input scenario, ORCHIMIC predicted a doubling of microbial biomass, while SOC stock increased by less than 1 % due to the priming effect. This limited increase in SOC stock contrasted with the proportional increase in SOC stock as modeled by the conventional SOC decomposition model (CENTURY), which can not reproduce the priming effect. If temperature increased by 5 K and litter input was doubled, ORCHIMIC predicted almost the same loss of SOC as when only temperature was increased. These tests suggest that the responses of SOC stock to warming and increasing input may differ considerably from those simulated by conventional SOC decomposition models when microbial dynamics are included. The next step is to incorporate the ORCHIMIC model into a global vegetation model to perform simulations for representative sites and future scenarios.


GCB Bioenergy ◽  
2014 ◽  
Vol 7 (4) ◽  
pp. 577-590 ◽  
Author(s):  
Bernardo Maestrini ◽  
Paolo Nannipieri ◽  
Samuel Abiven

2021 ◽  
Author(s):  
Oleg Chertov ◽  
Yakov Kuzyakov ◽  
Irina Priputina ◽  
Pavel Frolov ◽  
Vladimir Shanin ◽  
...  

Abstract Purpose. This study is aimed to develop a model of priming effect (accelerated mineralisation of soil organic matter (SOM)) induced by root exudate input into nitrogen (N) limited rhizosphere soil as a typical case for most terrestrial ecosystems. This ecologically important process in the functioning of the “plant-soil” system was parameterized for temperate and boreal forests.Methods. A model of priming effect has been developed based on the concept of N mining to making up for the N scarcity in exudates by accelerating SOM mineralisation. Lacking N for microbial growth is mined from the SOM mineralisation considering C:N ratio of soil. The model has a built-in food web module, which calculates soil fauna feeding on microorganisms, the release of by-products of faunal metabolism and mineral N used for root uptake.Results. The model verification demonstrated the similar order of the priming effect as in the published experiments. Testing at the pedon level revealed a high sensitivity of the model to N content in root exudates. Testing of the model at the ecosystem level revealed that CO2 emission from the priming can reach 25–30% of CO2 emission from the whole Ah horizon of forest soil. The same intensities were simulated for the fauna-derived N released within the rhizosphere.Conclusion. The new model reflects important ecological consequences of the main target function of priming effects within the “plant – soil – microorganisms – fauna” system – the microbial acceleration of C and N cycling in the rhizosphere and detritusphere to mobilise mineral N for plants.


2008 ◽  
Vol 5 (1) ◽  
pp. 163-190 ◽  
Author(s):  
T. Wutzler ◽  
M. Reichstein

Abstract. Decomposition of soil organic matter (SOM) is limited by both the available substrate and the active decomposer community. The understanding of this colimitation strongly affects the understanding of feedbacks of soil carbon to global warming and its consequences. This study compares different formulations of soil organic matter (SOM) decomposition. We compiled formulations from literature into groups according to the representation of decomposer biomass on the SOM decomposition rate a) non-explicit (substrate only), b) linear, and c) non-linear. By varying the SOM decomposition equation in a basic simplified decomposition model, we analyzed the following questions. Is the priming effect represented? Under which conditions is SOM accumulation limited? And, how does steady state SOM stocks scale with amount of fresh organic matter (FOM) litter inputs? While formulations (a) did not represent the priming effect, with formulations (b) steady state SOM stocks were independent of amount of litter input. Further, with several formulations (c) there was an offset of SOM that was not decomposed when no fresh OM was supplied. The finding that a part of the SOM is not decomposed on exhaust of FOM supply supports the hypothesis of carbon stabilization in deep soil by the absence of energy-rich fresh organic matter. Different representations of colimitation of decomposition by substrate and decomposers in SOM decomposition models resulted in qualitatively different long-term behaviour. A collaborative effort by modellers and experimentalists is required to identify appropriate and inappropriate formulations.


2015 ◽  
Author(s):  
Andrew Decker Steen ◽  
Lauren N. M. Quigley ◽  
Alison Buchan

The "priming effect", in which addition of labile substances changes the remineralization rate of recalcitrant organic matter, has been intensively studied in soils, but is less well-documented in aquatic systems. We investigated the extent to which additions of nutrients or labile organic carbon could influence remineralization rates of 14C-labeled, microbially-degraded, phytoplankton-derived organic matter (OM) in microcosms inoculated with microbial communities drawn from Groves Creek Estuary in coastal Georgia, USA. We found that amendment with labile protein plus phosphorus increased remineralization rates of degraded, phytoplankton-derived OM by up to 100%, whereas acetate slightly decreased remineralization rates relative to an unamended control. Addition of ammonium and phosphate induced a smaller effect, whereas addition of ammonium alone had no effect. Counterintuitively, alkaline phosphatase activities increased in response to the addition of protein under P-replete conditions, indicating that production of enzymes unrelated to the labile priming compound may be a mechanism for the priming effect. The observed priming effect was transient: after 36 days of incubation roughly the same quantity of organic carbon had been mineralized in all treatments including no-addition controls. This timescale is on the order of the typical hydrologic residence times of well-flushed estuaries suggesting that priming in estuaries has the potential to influence whether OC is remineralized in situ or exported to the coastal ocean.


Sign in / Sign up

Export Citation Format

Share Document