scholarly journals Slow pyrolysis liquid in reducing NH3 emissions from cattle slurry – Impacts on plant growth and soil organisms

Author(s):  
Marleena Hagner ◽  
Mari Räty ◽  
Johanna Nikama ◽  
Kimmo Rasa ◽  
Sari Peltonen ◽  
...  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Noshin Ilyas ◽  
Uzma Shoukat ◽  
Maimona Saeed ◽  
Nosheen Akhtar ◽  
Humaira Yasmin ◽  
...  

AbstractCrude oil contamination is a serious environmental threat for soil and plants growing in it. This study provides the first experimental evidence for comparison of the efficacy of pyrochar (slow pyrolysis biochar), thermal desorption and their combined application for degradation of crude oil contaminated soil (0%, 10%, and 20%), and growth of lettuce under glasshouse conditions. Pyrochar was produced by pyrolysis of sawdust at 350 °C, whereas thermal desorption was done by soil pyrolysis at 500 °C. Soil incubations were done for 120 days. The results of soil analysis showed that the crude oil degradation efficiency for the combined application was highest (40%), whereas pyrochar and thermal desorption was 25% and 19.6%, respectively. The maximum degradation products of crude oil were manifested by the detection of low molecular weight hydrocarbons (ranged between 173 and 422) in the soil with combined application treatment using Gas Chromatography-Mass Spectrometry (GC–MS) analysis. Crude oil contamination significantly reduced the germination and growth of the lettuce plants. Similarly, the combined application also improved plant growth by an increase of 24% in germination percentage, 35.5% in seedling vigor index, and 27% in promptness index under 20% crude oil contamination. Remediation caused a significant increase in fresh and dry biomass (40%), leaf area (30%), total chlorophyll (21%), water potential (23.6%), osmotic potential (27%), and membrane stability index (40%). Moreover, there was an increase in the contents of proline (32%), total amino acids (29%), soluble sugars (37%), proteins (27%), and antioxidant enzymes such as superoxide dismutase (19%), catalase (33%) and peroxidase (38%). This study confirmed the efficacy of pyrochar (slow pyrolysis biochar), thermal desorption, and their combined application for crude oil decontamination of soil at laboratory scale and also in improving soil usability by improved germination and growth of lettuce.


2005 ◽  
Vol 37 (3) ◽  
pp. 433-443 ◽  
Author(s):  
Katja Ilmarinen ◽  
Juha Mikola ◽  
Mervi Nieminen ◽  
Mauritz Vestberg

Nanomaterials ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2411
Author(s):  
Haleema Saleem ◽  
Syed Javaid Zaidi

Nanotechnology implies the scientific research, development, and manufacture, along with processing, of materials and structures on a nano scale. Presently, the contamination of metalloids and metals in the soil has gained substantial attention. The consolidation of nanomaterials and plants in ecological management has received considerable research attention because certain nanomaterials could enhance plant seed germination and entire plant growth. Conversely, when the nanomaterial concentration is not properly controlled, toxicity will definitely develop. This paper discusses the role of nanomaterials as: (1) nano-pesticides (for improving the plant resistance against the biotic stress); and (2) nano-fertilizers (for promoting the plant growth by providing vital nutrients). This review analyzes the potential usages of nanomaterials in agroecosystem. In addition, the adverse effects of nanomaterials on soil organisms are discussed. We mostly examine the beneficial effects of nanomaterials such as nano-zerovalent iron, iron oxide, titanium dioxide, nano-hydroxyapatite, carbon nanotubes, and silver- and copper-based nanomaterials. Some nanomaterials can affect the growth, survival, and reproduction of soil organisms. A change from testing/using nanomaterials in plants for developing nanomaterials depending on agricultural requirements would be an important phase in the utilization of nanomaterials in sustainable agriculture. Conversely, the transport as well as ecological toxicity of nanomaterials should be seriously examined for guaranteeing its benign usage in agriculture.


Plant Disease ◽  
2000 ◽  
Vol 84 (12) ◽  
pp. 1275-1281 ◽  
Author(s):  
C. Riegel ◽  
J. P. Noe

The effects of chicken litter incorporated 28, 14, and 0 days before planting on Meloidogyne incognita in cotton and soil organisms were determined in the greenhouse. Treatments consisted of field soil amended with litter at rates of 0, 0.125, 0.25, 0.5, and 1% by weight. At 45 and 90 days after planting, numbers of M. incognita decreased as rates of litter increased. Microbivorous nematode densities increased as litter rates increased only in the first experiment. Plant growth increased as litter rates increased, regardless of when the litter was incorporated, or the presence or absence of M. incognita. Bacterial and fungal CFU fluctuated during both experiments, but generally had positive linear relationships with litter rate. Population densities of M. incognita decreased with increasing bacterial and fungal counts in amended soil. Bacterial genera identified from the litter-amended soil included Arthrobacter, Bacillus, Cellulomonas, Mi-crococcus, Pseudomonas, and Rhodococcus.


2015 ◽  
Vol 58 ◽  
pp. 61-70 ◽  
Author(s):  
Paul B. Larsen

Ethylene is the simplest unsaturated hydrocarbon, yet it has profound effects on plant growth and development, including many agriculturally important phenomena. Analysis of the mechanisms underlying ethylene biosynthesis and signalling have resulted in the elucidation of multistep mechanisms which at first glance appear simple, but in fact represent several levels of control to tightly regulate the level of production and response. Ethylene biosynthesis represents a two-step process that is regulated at both the transcriptional and post-translational levels, thus enabling plants to control the amount of ethylene produced with regard to promotion of responses such as climacteric flower senescence and fruit ripening. Ethylene production subsequently results in activation of the ethylene response, as ethylene accumulation will trigger the ethylene signalling pathway to activate ethylene-dependent transcription for promotion of the response and for resetting the pathway. A more detailed knowledge of the mechanisms underlying biosynthesis and the ethylene response will ultimately enable new approaches to be developed for control of the initiation and progression of ethylene-dependent developmental processes, many of which are of horticultural significance.


1993 ◽  
Vol 89 (1) ◽  
pp. 33-39 ◽  
Author(s):  
Jeff S. Kuehny ◽  
Mary C. Halbrooks

1994 ◽  
Vol 90 (4) ◽  
pp. 739-747 ◽  
Author(s):  
Diana Lee ◽  
Barbara A. Moffatt

Sign in / Sign up

Export Citation Format

Share Document