Towards the evaluation of regional ecosystem integrity using NDVI, brightness temperature and surface heterogeneity

Author(s):  
Jakub Zelený ◽  
Daniel Mercado-Bettín ◽  
Felix Müller
2020 ◽  
Vol 4 (1) ◽  
Author(s):  
Catherine M. Febria ◽  
Maggie Bayfield ◽  
Kathryn E. Collins ◽  
Hayley S. Devlin ◽  
Brandon C. Goeller ◽  
...  

In Aotearoa New Zealand, agricultural land-use intensification and decline in freshwater ecosystem integrity pose complex challenges for science and society. Despite riparian management programmes across the country, there is frustration over a lack in widespread uptake, upfront financial costs, possible loss in income, obstructive legislation and delays in ecological recovery. Thus, social, economic and institutional barriers exist when implementing and assessing agricultural freshwater restoration. Partnerships are essential to overcome such barriers by identifying and promoting co-benefits that result in amplifying individual efforts among stakeholder groups into coordinated, large-scale change. Here, we describe how initial progress by a sole farming family at the Silverstream in the Canterbury region, South Island, New Zealand, was used as a catalyst for change by the Canterbury Waterway Rehabilitation Experiment, a university-led restoration research project. Partners included farmers, researchers, government, industry, treaty partners (Indigenous rights-holders) and practitioners. Local capacity and capability was strengthened with practitioner groups, schools and the wider community. With partnerships in place, co-benefits included lowered costs involved with large-scale actions (e.g., earth moving), reduced pressure on individual farmers to undertake large-scale change (e.g., increased participation and engagement), while also legitimising the social contracts for farmers, scientists, government and industry to engage in farming and freshwater management. We describe contributions and benefits generated from the project and describe iterative actions that together built trust, leveraged and aligned opportunities. These actions were scaled from a single farm to multiple catchments nationally.


PIERS Online ◽  
2010 ◽  
Vol 6 (6) ◽  
pp. 500-503 ◽  
Author(s):  
Andreas Colliander ◽  
Seung-Bum Kim ◽  
Simon H. Yueh ◽  
Mike H. Cosh ◽  
Thomas J. Jackson ◽  
...  

2019 ◽  
Vol 55 (9) ◽  
pp. 975-985
Author(s):  
D. Yu. Vasil’ev ◽  
N. V. Velikanov ◽  
V. V. Vodopyanov ◽  
N. N. Krasnogorskaya ◽  
V. A. Semenov ◽  
...  

2020 ◽  
Vol 12 (12) ◽  
pp. 1915
Author(s):  
Joe K. Taylor ◽  
Henry E. Revercomb ◽  
Fred A. Best ◽  
David C. Tobin ◽  
P. Jonathan Gero

The Absolute Radiance Interferometer (ARI) is an infrared spectrometer designed to serve as an on-orbit radiometric reference with the ultra-high accuracy (better than 0.1 K 3‑σ or k = 3 brightness temperature at scene brightness temperature) needed to optimize measurement of the long-term changes of Earth’s atmosphere and surface. If flown in an orbit that frequently crosses sun-synchronous orbits, ARI could be used to inter-calibrate the international fleet of infrared (IR) hyperspectral sounders to similar measurement accuracy, thereby establishing an observing system capable of achieving sampling biases on high-information-content spectral radiance products that are also < 0.1 K 3‑σ. It has been shown that such a climate observing system with <0.1 K 2‑σ overall accuracy would make it possible to realize times to detect subtle trends of temperature and water vapor distributions that closely match those of an ideal system, given the limit set by the natural variability of the atmosphere. This paper presents the ARI sensor's overall design, the new technologies developed to allow on-orbit verification and test of its accuracy, and the laboratory results that demonstrate its capability. In addition, we describe the techniques and uncertainty estimates for transferring ARI accuracy to operational sounders, providing economical global coverage. Societal challenges posed by climate change suggest that a Pathfinder ARI should be deployed as soon as possible.


Author(s):  
Huizeng Li ◽  
An Li ◽  
Zhipeng Zhao ◽  
Luanluan Xue ◽  
Mingzhu Li ◽  
...  

2021 ◽  
Vol 33 (1) ◽  
Author(s):  
Martin Jenssen ◽  
Stefan Nickel ◽  
Winfried Schröder

Abstract Background Atmospheric deposition of nitrogen and climate change can have impacts on ecological structures and functions, and thus on the integrity of ecosystems and their services. Operationalization of ecosystem integrity is still an important desideratum. Results A methodology for classifying the ecosystem integrity of forests in Germany under the influence of climate change and atmospheric nitrogen deposition is presented. The methodology was based on 14 indicators for six ecosystem functions: habitat function, net primary function, carbon sequestration, nutrient and water flux, resilience. It allows assessments of ecosystem integrity changes by comparing current or prospective ecosystem states with ecosystem-type-specific reference states as described by quantitative indicators for 61 forest ecosystem types based on data before 1990. Conclusion The method developed enables site-specific classifications of ecosystem integrity as well as classifications with complete coverage and determinations of temporal trends as shown using examples from the Thuringian Forest and the “Kellerwald-Edersee” National Park (Germany).


Sign in / Sign up

Export Citation Format

Share Document