Ferrihydrite enrichment in the rhizosphere of unsaturated soil improves nutrient retention while limiting arsenic and uranium plant uptake

Author(s):  
Arindam Malakar ◽  
Daniel D. Snow ◽  
Michael Kaiser ◽  
Jordan Shields ◽  
Bijesh Maharjan ◽  
...  
2020 ◽  
Author(s):  
Arindam Malakar ◽  
Michael Kaiser ◽  
Daniel D. Snow ◽  
Harkamal Walia ◽  
Chittaranjan Ray

EDIS ◽  
2013 ◽  
Vol 2013 (11) ◽  
Author(s):  
Michael A. Davis ◽  
Doug R. Sloan ◽  
Gerald Kidder ◽  
R. D. Jacobs

Animal manures have been used as natural crop fertilizers for centuries. Because of poultry manure’s high nitrogen content, it has long been recognized as one of the most desirable manures. Besides fertilizing crops, manures also supply other essential plant nutrients and serve as a soil amendment by adding organic matter, which helps improve the soil’s moisture and nutrient retention. Organic matter persistence will vary with temperature, drainage, rainfall, and other environmental factors. This 2-page fact sheet was written by Michael A. Davis, D.R. Sloan, Gerald Kidder, and R.D. Jacobs, and published by the UF Department of Animal Science, November 2013. http://edis.ifas.ufl.edu/aa205


1997 ◽  
Author(s):  
Leonard W. Lion ◽  
Brent Alspach ◽  
Jason Gilbert ◽  
Sean Lorden

HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 557a-557
Author(s):  
Mary Ann Rose ◽  
Barbara Biernacka

Long-standing fertilizer recommendations for field-grown nursery and landscape ornamentals are based on maximizing growth, not nutrient efficiency. Further, these recommendations fall short because of failure to consider 1) the extent of crop nutrient removal, 2) varying nutrient retention characteristics of soils across the United States, and 3) a body of research that suggests that woody ornamentals have a limited response to fertilization under most soil conditions. Concern for the environmental impact of fertilization justifies a reevaluation of current nursery fertilization practices, as well a discussion of the practical constraints on the adoption of new approaches, e.g., nutrient demand-driven fertilization. Research on the nutrient use patterns of woody plants will be reviewed with emphasis on implications for increasing fertilization efficiency. OSU research on water availability and nutrient-use interactions also will be presented.


Sign in / Sign up

Export Citation Format

Share Document