Particle size distribution and total suspended solid concentrations in urban surface runoff

Author(s):  
Hongtao Zhao ◽  
Yukun Ma ◽  
Jinxiu Fang ◽  
Lian Hu ◽  
Xuyong Li
1997 ◽  
Vol 36 (4) ◽  
pp. 159-165 ◽  
Author(s):  
H. Landa ◽  
A. Capella ◽  
B. Jiménez

The filtration efficiency of an Advanced Primary Treatment System (APT) was analyzed in terms of suspended solids concentration, particle size distribution and helminth eggs counts. A study was carried out on three one-metre deep sand filters with a specific size (ES) of 0.6, 0.8 and 1.2 mm. More than 50 runs were done with operating rate of 7, 10, 12 and 15 m/h. Basic design-related information was obtained for the APT system. A filter with a 1.2 mm ES provided the best effluent, with 0.1 Helminth egg/L. The average suspended solid concentration in the effluent was 39 mg/L. The most recommendable filtration rate was 10 m/h with a run time of 33 h. A study of the particle distribution was made for each step of the process based on size.


Water ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1738 ◽  
Author(s):  
Steffen Rommel ◽  
Brigitte Helmreich

Stormwater quality improvement devices use sedimentation as a pre-treatment step to separate contaminant laden particulate matter (PM) from traffic area runoff. Multiple studies describe worse settling behavior during the cold season. This paper is written in response to a decreased PM retention that was observed in the cold season during a 20-month monitoring of a sedimentation tank. However, the data was insufficient to assess the two factors that influence sedimentation during the cold season—temperature and de-icing salt application. Therefore, simplified discrete particle settling models were used to determine the influence of temperature and de-icing salt. These influences were compared to other factors, like overflow rate, particle density, and particle size distribution. To calculate the effect of temperature and de-icing salt on density and viscosity, two empirical models were applied for the first time in this field. The calculations showed that de-icing salt (NaCl) had a negligible influence on the retention of PM. However, reducing the temperature from 20 °C to 5 °C was shown to decrease the total suspended solid removal efficiency by up to 8%. The order of influencing factors was found to be particle size distribution >> overflow rate > particle density > temperature.


2020 ◽  
Vol 69 (4) ◽  
pp. 102-106
Author(s):  
Shota Ohki ◽  
Shingo Mineta ◽  
Mamoru Mizunuma ◽  
Soichi Oka ◽  
Masayuki Tsuda

1995 ◽  
Vol 5 (1) ◽  
pp. 75-87 ◽  
Author(s):  
Christine M. Woodall ◽  
James E. Peters ◽  
Richard O. Buckius

1998 ◽  
Vol 84 (5) ◽  
pp. 387-392 ◽  
Author(s):  
Takashi INOUE ◽  
Yuzo HOSOI ◽  
Koe NAKAJIMA ◽  
Hiroyuki TAKENAKA ◽  
Tomonori HANYUDA

2020 ◽  
Vol 86 (1) ◽  
pp. 32-37
Author(s):  
Valeria A. Brodskaya ◽  
Oksana A. Molkova ◽  
Kira B. Zhogova ◽  
Inga V. Astakhova

Powder materials are widely used in the manufacture of electrochemical elements of thermal chemical sources of current. Electrochemical behavior of the powders depends on the shape and size of their particles. The results of the study of the microstructure and particles of the powders of vanadium (III), (V) oxides and lithium aluminate obtained by transmission electron and atomic force microscopy, X-ray diffraction and gas adsorption analyses are presented. It is found that the sizes of vanadium (III) and vanadium (V) oxide particles range within 70 – 600 and 40 – 350 nm, respectively. The size of the coherent-scattering regions of the vanadium oxide particles lies in the lower range limit which can be attributed to small size of the structural elements (crystallites). An average volumetric-surface diameter calculated on the basis of the surface specific area is close to the upper range limit which can be explained by the partial agglomeration of the powder particles. Unlike the vanadium oxide particles, the range of the particle size distribution of the lithium aluminate powder is narrower — 50 – 110 nm. The values of crystallite sizes are close to the maximum of the particle size distribution. Microstructural analysis showed that the particles in the samples of vanadium oxides have a rounded (V2O3) or elongated (V2O5) shape; whereas the particles of lithium aluminate powder exhibit lamellar structure. At the same time, for different batches of the same material, the particle size distribution is similar, which indicates the reproducibility of the technologies for their manufacture. The data obtained can be used to control the constancy of the particle size distribution of powder materials.


Sign in / Sign up

Export Citation Format

Share Document