scholarly journals Proximate and ultimate controls on carbon and nutrient dynamics of small agricultural catchments

2016 ◽  
Vol 13 (6) ◽  
pp. 1863-1875 ◽  
Author(s):  
Zahra Thomas ◽  
Benjamin W. Abbott ◽  
Olivier Troccaz ◽  
Jacques Baudry ◽  
Gilles Pinay

Abstract. Direct and indirect effects from human activity have dramatically increased nutrient loading to aquatic inland and estuarine ecosystems. Despite an abundance of studies investigating the impact of agricultural activity on water quality, our understanding of what determines the capacity of a watershed to remove or retain nutrients remains limited. The goal of this study was to identify proximate and ultimate controls on dissolved organic carbon and nutrient dynamics in small agricultural catchments by investigating the relationship between catchment characteristics, stream discharge, and water chemistry. We analyzed a 5-year, high-frequency water chemistry data set from three catchments in western France ranging from 2.3 to 10.8 km2. The relationship between hydrology and solute concentrations differed between the three catchments and was associated with hedgerow density, agricultural activity, and geology. The catchment with thicker soil and higher surface roughness had relatively invariant carbon and nutrient chemistry across hydrologic conditions, indicating high resilience to human disturbance. Conversely, the catchments with smoother, thinner soils responded to both intra- and interannual hydrologic variation with high concentrations of phosphate (PO43−) and ammonium (NH4+) in streams during low flow conditions and strong increases in dissolved organic carbon (DOC), sediment, and particulate organic matter during high flows. Despite contrasting agricultural activity between catchments, the physical context (geology, topography, and land-use configuration) appeared to be the most important determinant of catchment solute dynamics based on principle components analysis. The influence of geology and accompanying topographic and geomorphological factors on water quality was both direct and indirect because the distribution of agricultural activity in these catchments is largely a consequence of the geologic and topographic context. This link between inherent catchment buffering capacity and the probability of human disturbance provides a useful perspective for evaluating vulnerability of aquatic ecosystems and for managing systems to maintain agricultural production while minimizing leakage of nutrients.

2015 ◽  
Vol 12 (18) ◽  
pp. 15337-15367 ◽  
Author(s):  
Z. Thomas ◽  
B. W. Abbott ◽  
O. Troccaz ◽  
J. Baudry ◽  
G. Pinay

Abstract. Direct and indirect effects from agriculture, urbanization, and resource extraction have dramatically increased nutrient loading to aquatic inland and estuarine ecosystems. The capacity of a watershed to remove or retain nutrients is a function of biotic and abiotic conditions across the terrestrial-aquatic gradient including soil, groundwater, riparian zone, and surface water. The goal of this study was to identify proximate and ultimate controls on dissolved organic carbon and nutrient dynamics in small agricultural catchments. We analysed a five-year, high frequency water chemistry dataset from 3 catchments ranging from 2.3 to 10.8 km2 in northwestern France. Catchments differed in the relationship between hydrology and solute concentrations, associated with catchment characteristics such as hedgerow density, agricultural activity, and geology. The catchment with thicker soil and higher surface roughness appeared to have greater transient storage and residence time, buffering the catchment to fluctuations in water chemistry, reflected in relatively invariant carbon and nutrient chemistry across hydrologic conditions. Conversely, the catchments with smoother, thinner soils responded to both intra- and inter-annual hydrologic variation with high concentrations of PO43− and NH4+ during low flow conditions and strong increases in DOC, sediment, and particulate organic matter during high flows. Despite contrasting agricultural activity between catchments, the physical context (geology, topography, and land use) appeared to be the most important determinant of catchment solute dynamics based on principle components analysis. The influence of geology and accompanying topographic and geomorphological factors on elemental fluxes is both direct and indirect because the distribution of agricultural activity in these catchments is largely a consequence of the geologic and topographic context. This link between inherent catchment buffering capacity and probability of human disturbance provides a useful perspective for evaluating vulnerability of aquatic ecosystems to human disturbance.


2020 ◽  
Vol 32 ◽  
Author(s):  
Ingry Natalia Gómez Miranda ◽  
Fabio Vélez Macías ◽  
Gustavo Antonio Peñuela Mesa

Abstract: Aim This article deals with the estimation of a model for CO2 emissions in the Hidrosogamoso reservoir based on the organic matter level and water quality. This is in order to determine the impact of the creation of a tropical reservoir on the generation of greenhouse gases (GHG), and to establish the water quality and emissions dynamics. We hypothesize that the spatial variability of emissions is determined by water quality and carbon cycling in water. Methods Multivariate techniques were applied to determine the relationships between CO2 and certain physicochemical variables measured in the reservoir between February and May 2015, taking samples in 10 stations and measuring 14 variables (water quality parameters and CO2). Factor, cluster, discriminant and regression analysis, as well as the geostatistical technique kriging, were used. Results We observed that all variables except dissolved organic carbon have strong linear relationships. Nitrate, total-P, total solids and total suspended solids are related due to the presence of nutrients in the water; chlorophyll a and biodegradable dissolved organic carbon due to organic carbon; and alkalinity and dissolved solids due to dissolved minerals. The sampling stations can be classified into two homogeneous groups. The first consists of the stations peripheral to the reservoir and the second of stations inside the reservoir. This difference is due mainly to the behavior of chlorophyll a and biodegradable dissolved organic carbon, and these two variables are also the best predictors for CO2, with a maximum adjustment of 70%. Conclusions Our main conclusion is that the production of CO2 is due to decomposition of flooded organic carbon, depends on the soils flooded and the tributary water quality, and that the production of this gas will, based on the literature, continue for 5 to 10 years depending on the nature of the forest flooded.


2021 ◽  
Vol 11 (14) ◽  
pp. 6592
Author(s):  
Ana Moldovan ◽  
Maria-Alexandra Hoaghia ◽  
Anamaria Iulia Török ◽  
Marius Roman ◽  
Ionut Cornel Mirea ◽  
...  

This study aims to investigate the quality and vulnerability of surface water (Aries River catchment) in order to identify the impact of past mining activities. For this purpose, the pollution and water quality indices, Piper and Durov plots, as well vulnerability modeling maps were used. The obtained results indicate that the water samples were contaminated with As, Fe, Mn, Pb and have relatively high concentrations of SO42−, HCO3−, TDS, Ca, K, Mg and high values for the electrical conductivity. Possible sources of the high content of chemicals could be the natural processes or the inputs of the mine drainage. Generally, according to the pollution indices, which were correlated to high concentrations of heavy metals, especially with Pb, Fe and Mn, the water samples were characterized by heavy metals pollution. The water quality index classified the studied water samples into five different classes of quality, namely: unsuitable for drinking, poor, medium, good and excellent quality. Similarly, medium, high and very high vulnerability classes were observed. The Durov and Piper plots classified the waters into Mg-HCO3− and Ca-Cl− types. The past and present mining activities clearly change the water chemistry and alter the quality of the Aries River, with the water requiring specific treatments before use.


2021 ◽  
Vol 9 (5) ◽  
pp. 474
Author(s):  
René Rodríguez-Grimón ◽  
Nestor Hernando Campos ◽  
Ítalo Braga Castro

Since 2013, there has been an increase (>23%) in naval traffic using maritime routes and ports on the coastal fringe of Santa Marta, Colombia. Of major concern, and described by several studies, is the relationship between maritime traffic and coastal contamination. This study proposed a maritime traffic indicator considering the simultaneous effects of several relevant measurements of water quality parameters to estimate the impact of naval activity. The approach involved developing a model including the number of vessels, hull length, and permanence time in berths. In addition, water quality variables, considering climatic seasons, were used to verify association with maritime traffic and touristic activities. The high concentrations of total coliforms (TC) and dissolved/dispersed petroleum hydrocarbons in chrysene equivalents (DDPH) reported by the International Marina of Santa Marta (SM) were affected by the local anthropic activities, including tourism, naval traffic, and urban wastewater discharges. Moreover, our results suggest the occurrence of multiple chemical impacts within Tayrona National Natural Park (PNNT) affecting conservation goals. The estimation of the maritime traffic indicator proposed in this study may be an easy and more complete tool for future studies evaluating the impact of naval activities on environmental quality.


2000 ◽  
Vol 57 (1) ◽  
pp. 171-180 ◽  
Author(s):  
Joel W Snodgrass ◽  
Charles H Jagoe ◽  
A Lawrence Bryan, Jr. ◽  
Heather A Brant ◽  
J Burger

We sampled fish and selected water chemistry variables (dissolved organic carbon, sulfate, and pH) in nine southeastern depression wetlands to determine relationships among wetland morphology (surface area and maximum depth), hydrology, water chemistry, and bioaccumulation of mercury (Hg) in fishes. We concentrated on three fish species representing the range of trophic levels occupied by fish in southeastern depression wetlands. Whole-body Hg concentrations were lowest in lake chubsucker (Erimyzon sucetta), a benthic detritivore, and highest in redfin pickerel (Esox americanus americanus), a top carnivore. However, variation in Hg concentrations among wetlands was greater than variation among species. Regression analyses indicated that maximum depth and hydroperiod accounted for significant portions of variation among wetlands in standardized lake chubsucker and redfin pickerel Hg concentrations. Maximum depth and dissolved organic carbon had a negative effect on standardized Hg concentrations in mud sunfish (Acantharchus pomotis). Path analysis confirmed the results of regression analyses, with maximum depth and hydroperiod having relatively large direct negative effects on Hg concentrations. Our results suggest that leaching of Hg from sediments during the drying and reflooding cycle and binding of Hg species by dissolved organic carbon in the water column are primary factors controlling the bioavailability of Hg in southeastern depression wetlands.


2016 ◽  
Vol 141 ◽  
pp. 153-167 ◽  
Author(s):  
J. Zhou ◽  
M. Kotovitch ◽  
H. Kaartokallio ◽  
S. Moreau ◽  
J.-L. Tison ◽  
...  

2021 ◽  
Author(s):  
Alexandra Gogou ◽  
Constantine Parinos ◽  
Spyros Stavrakakis ◽  
Emmanouil Proestakis ◽  
Maria Kanakidou ◽  
...  

<p>Biotic and abiotic processes that form, alter, transport, and remineralize particulate organic carbon, silicon, calcium carbonate, and other minor and trace chemical species in the water column are central to the ocean’s ecological and biogeochemical functioning and of fundamental importance to the ocean carbon cycle. Sinking particulate matter is the major vehicle for exporting carbon from the sea surface to the deep sea. During its transit towards the sea floor, most particulate organic carbon (POC) is returned to inorganic form and redistributed in the water column. This redistribution determines the surface concentration of dissolved CO<sub>2</sub>, and hence the rate at which the ocean can absorb CO<sub>2</sub> from the atmosphere. The ability to predict quantitatively the depth profile of remineralization is therefore critical to deciphering the response of the global carbon cycle to natural and human-induced changes.</p><p>Aiming to investigate the significant biogeochemical and ecological features and provide new insights on the sources and cycles of sinking particulate matter, a mooring line of five sediment traps was deployed from 2006 to 2015 (with some gap periods) at 5 successive water column depths (700, 1200, 2000, 3200 and 4300 m) in the SE Ionian Sea, northeastern Mediterranean (‘NESTOR’ site). We have examined the long-term records of downward fluxes for Corg, N<sub>tot</sub>, δ<sup>13</sup>Corg and δ<sup>15</sup>N<sub>tot</sub>, along with the associated ballast minerals (opal, lithogenics and CaCO<sub>3</sub>), lipid biomarkers, Chl-a and PP rates, phytoplankton composition, nutrient dynamics and atmospheric deposition.  </p><p>The satellite-derived seasonal and interannual variability of phytoplankton metrics (biomass and phenology) and atmospheric deposition (meteorology and air masses origin) was examined for the period of the sediment trap experiment. Regarding the atmospheric deposition, synergistic opportunities using Earth Observation satellite lidar and radiometer systems are proposed (e.g. Cloud‐Aerosol Lidar with Orthogonal Polarization - CALIOP, Moderate Resolution Imaging Spectroradiometer - MODIS), aiming towards a four‐dimensional exploitation of atmospheric aerosol loading (e.g. Dust Optical Depth) in the study area.</p><p>Our main goals are to: i) develop a comprehensive knowledge of carbon fluxes and associated mineral ballast fluxes from the epipelagic to the mesopelagic and bathypelagic layers, ii) elucidate the mechanisms governing marine productivity and carbon export and sequestration to depth and iii) shed light on the impact of atmospheric forcing and deposition in respect to regional and large scale circulation patterns and climate variability and the prevailing oceanographic processes (internal variability).</p><p>Acknowledgments</p><p>We acknowledge support of this work by the Action ‘National Network on Climate Change and its Impacts – <strong>CLIMPACT</strong>’, funded by the Public Investment Program of Greece (GSRT, Ministry of Development and Investments).</p>


2010 ◽  
Vol 70 (4 suppl) ◽  
pp. 1223-1230 ◽  
Author(s):  
C. Rechenmacher ◽  
AM. Siebel ◽  
A. Goldoni ◽  
CR. Klauck ◽  
T. Sartori ◽  
...  

The aim of this study was to determine the feasibility of combining water quality analysis with different biomarkers to characterise the relationship between anthropogenic contamination and biotic response in the Sinos River, southern Brazil. Wistar rats were studied using three biomarkers combined with physical, chemical and microbiological analysis to assess the effects of pollution at four sampling sites. The induction of oxidative stress was quantified by MDA levels in peripheral blood, lymphocyte DNA damage was determined using the comet assay, and histopathological changes were analysed in the liver. After sampling, animals were allowed to drink the river water during a 48 hours period. No increase in oxidative stress and DNA damage was observed. However, liver damage was observed in the animals exposed to water samples, indicating that the Sinos River is contaminated with hepatotoxic substances. Water analyses confirmed that water quality decreased downriver.


Sign in / Sign up

Export Citation Format

Share Document