Different biomass production and soil water patterns between natural and artificial vegetation along an environmental gradient on the Loess Plateau

Author(s):  
Yuting Yang ◽  
Yongming Fan ◽  
Can Mujue Basang ◽  
Jinxin Lu ◽  
Cheng Zheng ◽  
...  
2021 ◽  
Vol 312 ◽  
pp. 107354 ◽  
Author(s):  
Ai-Tian Ren ◽  
Rui Zhou ◽  
Fei Mo ◽  
Shu-Tong Liu ◽  
Ji-Yuan Li ◽  
...  

2021 ◽  
Vol 312 ◽  
pp. 107342
Author(s):  
Rui Zhang ◽  
Di Wang ◽  
Ziqi Yang ◽  
Katsutoshi Seki ◽  
Manmohanjit Singh ◽  
...  

2021 ◽  
Vol 41 (15) ◽  
Author(s):  
孙天雨,王雪,李丹洋,刘欣蕊,王瑞丽,张硕新 SUN Tianyu

2005 ◽  
Vol 60 (5) ◽  
pp. 1013-1016
Author(s):  
Reiji KIMURA ◽  
Yuanbo LIU ◽  
Naru TAKAYAMA ◽  
Makio KAMICHIKA ◽  
Nobuhiro MATSUOKA ◽  
...  

2018 ◽  
Vol 417 ◽  
pp. 137-143 ◽  
Author(s):  
Yu Liu ◽  
Hai-Tao Miao ◽  
Ze Huang ◽  
Zeng Cui ◽  
Honghua He ◽  
...  

Water ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 2183 ◽  
Author(s):  
Zhiqiang Zhang ◽  
Bingcheng Si ◽  
Huijie Li ◽  
Min Li

Piston and preferential water flow are viewed as the two dominant water transport mechanisms regulating terrestrial water and solute cycles. However, it is difficult to accurately separate the two water flow patterns because preferential flow is not easy to capture directly in field environments. In this study, we take advantage of the afforestation induced desiccated deep soil, and directly quantify piston and preferential water flow using chloride ions (Cl−) and soil water profiles, in four deforested apple orchards on the Loess Plateau. The deforestation time ranged from 3 to 15 years. In each of the four selected orchards, there was a standing orchard that was planted at the same time as the deforested one, and therefore the standing orchard was used to benchmark the initial Cl− and soil water profiles of the deforested orchard. In the deforested orchards, piston flow was detected using the migration of the Cl− front, and preferential flow was measured via soil water increase below the Cl− front. Results showed that in the desiccated zone, Cl− migrated to deeper soil after deforestation, indicating that the desiccated soil layer formed by the water absorption of deep-rooted apple trees did not completely inhibit the movement of water. Moreover, there was an evident increase in soil water below the downward Cl− front, directly demonstrating the existence of preferential flow in deep soil under field conditions. Although pore water velocity was small in the deep loess, preferential water flow still accounted for 34–65% of total infiltrated water. This study presented the mechanisms that regulate movement of soil water following deforestation through field observations and advanced our understanding of the soil hydrologic process in deep soil.


Sign in / Sign up

Export Citation Format

Share Document