Fatigue crack propagation behavior of lead-free solder joints under high-strain-rate cyclic loading

2008 ◽  
Vol 59 (12) ◽  
pp. 1239-1242 ◽  
Author(s):  
S SEAH ◽  
E WONG ◽  
V SHIM
Author(s):  
Yuvraj Singh ◽  
Anirudh Udupa ◽  
Srinivasan Chandrasekar ◽  
Ganesh Subbarayan

Abstract Studies on medium to high strain-rate characterization (≥ 0.1s−1) of lead-free solder are relatively few, primarily due to the lack of available methods for testing. Prior work in literature uses Split Hopkinson Bar (SPHB) experiments for high strain-rate characterization (≥ 300s−1) [1,2], while a modified micro-scale tester is used for medium strain-rate characterization (0.005s−1 to 300s−1) [3] and an impact hammer test setup for testing in a strain-rate regime from 1s−1 to 100s−1 [4]. However, there is still limited data in strain-rate regimes of relevance, specifically for drop shock applications. In this paper, we present orthogonal metal cutting as a novel method to characterize lead-free solder alloys. Experiments are carried out using a wedgelike tool that cuts through a work piece at a fixed depth and rake angle while maintaining a constant cutting velocity. These experiments are conducted at room temperature on Sn1.0Ag0.5Cu bulk test specimens with strain-rates varying from 0.32 to 48s−1. The range of strain-rates is only limited by the ball screw driven slide allowing higher strain-rates if needed. The strains and strain-rates are captured through Particle Image Velocimetry (PIV) using sequential images taken from a high-speed camera just ahead of the cutting tool. The PIV enables non-contact recording of high strain-rate deformations, while the dynamometer on the cutting head allows one to capture the forces exerted during the cutting process. Results for the stress-strain response obtained through the experiments are compared to prior work for validation. Orthogonal metal cutting is shown to be a potentially attractive method for characterization of solder at higher strain-rates.


2006 ◽  
Vol 321-323 ◽  
pp. 720-723
Author(s):  
Yong Hak Huh ◽  
Philip Park ◽  
Dong Jin Kim ◽  
Jun Hyub Park

Fatigue crack propagation behavior under cyclic tensile or torsional loading with biaxial static loads has been investigated. Two different biaxial loading systems, i.e. cyclic tensile loading with static torsional load and cyclic torsional loading with static tensile load, were employed to thin-walled tubular specimens. The crack propagation was measured by two crack gages mounted near the notch and crack opening level was measured by unloading compliance method. The directions of the fatigue crack propagated under respective biaxial loading conditions were examined and the growth rates were evaluated by using several cyclic parameters, including equivalent stress intensity factor range, Keff, crack tip opening displacement range, CTD, minimum strain energy density factor range, Smin. Furthermore, the growth rates were evaluated by effective cyclic parameters considering crack closure. It was found that the biaxial static stress superimposed on the cyclic tensile or torsional loading tests has no influence on the propagation directions of the cracks. Furthermore, it was shown that the fatigue crack growth rates under biaixial faigue loading were well expressed by using the cyclic fatigue parameters, Keq,eff, CTDeff, Smin,eff considering crack closure effect.


Sign in / Sign up

Export Citation Format

Share Document