Optimal placement of remote-controlled switches in distribution networks considering load forecasting

Author(s):  
Jovana Forcan ◽  
Miodrag Forcan
Electronics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1452
Author(s):  
Cristian Mateo Castiblanco-Pérez ◽  
David Esteban Toro-Rodríguez ◽  
Oscar Danilo Montoya ◽  
Diego Armando Giral-Ramírez

In this paper, we propose a new discrete-continuous codification of the Chu–Beasley genetic algorithm to address the optimal placement and sizing problem of the distribution static compensators (D-STATCOM) in electrical distribution grids. The discrete part of the codification determines the nodes where D-STATCOM will be installed. The continuous part of the codification regulates their sizes. The objective function considered in this study is the minimization of the annual operative costs regarding energy losses and installation investments in D-STATCOM. This objective function is subject to the classical power balance constraints and devices’ capabilities. The proposed discrete-continuous version of the genetic algorithm solves the mixed-integer non-linear programming model that the classical power balance generates. Numerical validations in the 33 test feeder with radial and meshed configurations show that the proposed approach effectively minimizes the annual operating costs of the grid. In addition, the GAMS software compares the results of the proposed optimization method, which allows demonstrating its efficiency and robustness.


Electricity ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 187-204
Author(s):  
Gian Giuseppe Soma

Nowadays, response to electricity consumption growth is mainly supported by efficiency; therefore, this is the new main goal in the development of electric distribution networks, which must fully comply with the system’s constraints. In recent decades, the issue of independent reactive power services, including the optimal placement of capacitors in the grid due to the restructuring of the electricity industry and the creation of a competitive electricity market, has received attention from related companies. In this context, a genetic algorithm is proposed for optimal planning of capacitor banks. A case study derived from a real network, considering the application of suitable daily profiles for loads and generators, to obtain a better representation of the electrical conditions, is discussed in the present paper. The results confirmed that some placement solutions can be obtained with a good compromise between costs and benefits; the adopted benefits are energy losses and power factor infringements, taking into account the network technical limits. The feasibility and effectiveness of the proposed algorithm for optimal placement and sizing of capacitor banks in distribution systems, with the definition of a suitable control pattern, have been proved.


2021 ◽  
Vol 11 (5) ◽  
pp. 2175
Author(s):  
Oscar Danilo Montoya ◽  
Walter Gil-González ◽  
Jesus C. Hernández

The problem of reactive power compensation in electric distribution networks is addressed in this research paper from the point of view of the combinatorial optimization using a new discrete-continuous version of the vortex search algorithm (DCVSA). To explore and exploit the solution space, a discrete-continuous codification of the solution vector is proposed, where the discrete part determines the nodes where the distribution static compensator (D-STATCOM) will be installed, and the continuous part of the codification determines the optimal sizes of the D-STATCOMs. The main advantage of such codification is that the mixed-integer nonlinear programming model (MINLP) that represents the problem of optimal placement and sizing of the D-STATCOMs in distribution networks only requires a classical power flow method to evaluate the objective function, which implies that it can be implemented in any programming language. The objective function is the total costs of the grid power losses and the annualized investment costs in D-STATCOMs. In addition, to include the impact of the daily load variations, the active and reactive power demand curves are included in the optimization model. Numerical results in two radial test feeders with 33 and 69 buses demonstrate that the proposed DCVSA can solve the MINLP model with best results when compared with the MINLP solvers available in the GAMS software. All the simulations are implemented in MATLAB software using its programming environment.


2018 ◽  
Vol 7 (3.3) ◽  
pp. 168
Author(s):  
Gera Kalidas Babu ◽  
P V. Ramana rao

The present paper foremost objective is to resolve best practicable location of solar photovoltaic distribution generation (DG) of several cases using different distribution load power factors and to analyze power loss reduction. This objective achieved by a recent developed method, the so called colliding bodies’ optimization algorithm, to perceive optimum location. Performances of colliding bodies’ optimization algorithm have been evaluated and compared with other search algorithms. The execution to test viability and efficiency, the proposed collid-ing bodies’ optimization is simulated on standard IEEE 38 bus radial distribution networks. The acquired outcome from colliding bodies Optimization algorithm exhibits the possible location of distributed generation through different pre assumed load power factors compared to the other stochastic search bat and genetic algorithm.  


2011 ◽  
Vol 11 (4-5) ◽  
pp. 731-747 ◽  
Author(s):  
MASSIMILIANO CATTAFI ◽  
MARCO GAVANELLI ◽  
MADDALENA NONATO ◽  
STEFANO ALVISI ◽  
MARCO FRANCHINI

AbstractThis paper presents a new application of logic programming to a real-life problem in hydraulic engineering. The work is developed as a collaboration of computer scientists and hydraulic engineers, and applies Constraint Logic Programming to solve a hard combinatorial problem. This application deals with one aspect of the design of a water distribution network, i.e., the valve isolation system design. We take the formulation of the problem by Giustolisi and Savić (2008 Optimal design of isolation valve system for water distribution networks. InProceedings of the 10th Annual Water Distribution Systems Analysis Conference WDSA2008, J. Van Zyl, A. Ilemobade, and H. Jacobs, Eds.) and show how, thanks to constraint propagation, we can get better solutions than the best solution known in the literature for the Apulian distribution network. We believe that the area of the so-calledhydroinformaticscan benefit from the techniques developed in Constraint Logic Programming and possibly from other areas of logic programming, such as Answer Set Programming.


Entropy ◽  
2018 ◽  
Vol 20 (8) ◽  
pp. 576 ◽  
Author(s):  
Do Yoo ◽  
Dong Chang ◽  
Yang Song ◽  
Jung Lee

This study proposed a pressure driven entropy method (PDEM) that determines a priority order of pressure gauge locations, which enables the impact of abnormal condition (e.g., pipe failures) to be quantitatively identified in water distribution networks (WDNs). The method developed utilizes the entropy method from information theory and pressure driven analysis (PDA), which is the latest hydraulic analysis method. The conventional hydraulic approach has problems in determining the locations of pressure gauges, attributable to unrealistic results under abnormal conditions (e.g., negative pressure). The proposed method was applied to two benchmark pipe networks and one real pipe network. The priority order for optimal locations was produced, and the result was compared to existing approach. The results of the conventional method show that the pressure reduction difference of each node became so excessive, which resulted in a distorted distribution. However, with the method developed, which considers the connectivity of a system and the influence among nodes based on PDA and entropy method results, pressure gauges can be more realistically and reasonably located.


2021 ◽  
Vol 11 (23) ◽  
pp. 11525
Author(s):  
Oscar Danilo Montoya ◽  
Luis Fernando Grisales-Noreña ◽  
Lázaro Alvarado-Barrios ◽  
Andres Arias-Londoño ◽  
Cesar Álvarez-Arroyo

This research addresses the problem of the optimal placement and sizing of (PV) sources in medium voltage distribution grids through the application of the recently developed Newton metaheuristic optimization algorithm (NMA). The studied problem is formulated through a mixed-integer nonlinear programming model where the binary variables regard the installation of a PV source in a particular node, and the continuous variables are associated with power generations as well as the voltage magnitudes and angles, among others. To improve the performance of the NMA, we propose the implementation of a discrete–continuous codification where the discrete component deals with the location problem and the continuous component works with the sizing problem of the PV sources. The main advantage of the NMA is that it works based on the first and second derivatives of the fitness function considering an evolution formula that contains its current solution (xit) and the best current solution (xbest), where the former one allows location exploitation and the latter allows the global exploration of the solution space. To evaluate the fitness function and its derivatives, the successive approximation power flow method was implemented, which became the proposed solution strategy in a master–slave optimizer, where the master stage is governed by the NMA and the slave stage corresponds to the power flow method. Numerical results in the IEEE 34- and IEEE 85-bus systems show the effectiveness of the proposed optimization approach to minimize the total annual operative costs of the network when compared to the classical Chu and Beasley genetic algorithm and the MINLP solvers available in the general algebraic modeling system with reductions of 26.89% and 27.60% for each test feeder with respect to the benchmark cases.


Sign in / Sign up

Export Citation Format

Share Document