Epileptic opsoclonus due to cortical dysplasia of the left posterior temporal cortex: A simultaneous electroencephalogram and electrooculogram study

Seizure ◽  
2021 ◽  
Author(s):  
Jun Park ◽  
Guadalupe Fernandez Baca Vaca ◽  
Jonathan Miller ◽  
Hans Lüders
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Suhail Matar ◽  
Julien Dirani ◽  
Alec Marantz ◽  
Liina Pylkkänen

AbstractDuring language comprehension, the brain processes not only word meanings, but also the grammatical structure—the “syntax”—that strings words into phrases and sentences. Yet the neural basis of syntax remains contentious, partly due to the elusiveness of experimental designs that vary structure independently of meaning-related variables. Here, we exploit Arabic’s grammatical properties, which enable such a design. We collected magnetoencephalography (MEG) data while participants read the same noun-adjective expressions with zero, one, or two contiguously-written definite articles (e.g., ‘chair purple’; ‘the-chair purple’; ‘the-chair the-purple’), representing equivalent concepts, but with different levels of syntactic complexity (respectively, indefinite phrases: ‘a purple chair’; sentences: ‘The chair is purple.’; definite phrases: ‘the purple chair’). We expected regions processing syntax to respond differently to simple versus complex structures. Single-word controls (‘chair’/‘purple’) addressed definiteness-based accounts. In noun-adjective expressions, syntactic complexity only modulated activity in the left posterior temporal lobe (LPTL), ~ 300 ms after each word’s onset: indefinite phrases induced more MEG-measured positive activity. The effects disappeared in single-word tokens, ruling out non-syntactic interpretations. In contrast, left anterior temporal lobe (LATL) activation was driven by meaning. Overall, the results support models implicating the LPTL in structure building and the LATL in early stages of conceptual combination.


2000 ◽  
Vol 98 (3) ◽  
pp. 133-143 ◽  
Author(s):  
Jeffrey H Meyer ◽  
Richard Swinson ◽  
Sidney H Kennedy ◽  
Sylvain Houle ◽  
Gregory M Brown

1998 ◽  
Vol 10 (3) ◽  
pp. 303-315 ◽  
Author(s):  
C. J. Price ◽  
D. Howard ◽  
K. Patterson ◽  
E. A. Warburton ◽  
K. J. Friston ◽  
...  

Deep dyslexia is a striking reading disorder that results from left-hemisphere brain damage and is characterized by semantic errors in reading single words aloud (e.g., reading spirit as whisky). Two types of explanation for this syndrome have been advanced. One is that deep dyslexia results from a residual left-hemisphere reading system that has lost the ability to pronounce a printed word without reference to meaning. The second is that deep dyslexia reflects right-hemisphere word processing. Although previous attempts to adjudicate between these hypotheses have been inconclusive, the controversy can now be addressed by mapping functional anatomy. In this study, we demonstrate that reading by two deep dyslexic patients (CJ and JG) involves normal or enhanced activity in spared left-hemisphere regions associated with naming (Broca's area and the left posterior inferior temporal cortex) and with the meanings of words (the left posterior temporo-parietal cortex and the left anterior temporal cortex). In the right-hemisphere homologues of these regions, there was inconsistent activation within the normal group and between the deep dyslexic patients. One (CJ) showed enhanced activity (relative to the normals) in the right anterior inferior temporal cortex, the other (JG) in the right Broca's area, and both in the right frontal operculum. Although these differential right-hemisphere activations may have influenced the reading behavior of the patients, their activation patterns primarily reflect semantic and phonological systems in spared regions of the left hemisphere. These results preclude an explanation of deep dyslexia in terms of purely right-hemisphere word processing.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Anika Stockert ◽  
Michael Schwartze ◽  
David Poeppel ◽  
Alfred Anwander ◽  
Sonja Kotz

The flexible and efficient adaptation to dynamic, rapid changes in the auditory environment likely involves generating and updating of internal models. Such models arguably exploit connections between the neocortex and the cerebellum, supporting proactive adaptation. Here we tested whether temporo-cerebellar disconnection is associated with the processing of sound at short-timescales. First, we identify lesion-specific deficits for the encoding of short timescale spectro-temporal non-speech and speech properties in patients with left posterior temporal cortex stroke. Second, using lesion- guided probabilistic tractography in healthy participants, we revealed bidirectional temporo-cerebellar connectivity with cerebellar dentate nuclei and crura I/II. These findings support the view that the encoding and modeling of rapidly modulated auditory spectro-temporal properties can rely on a temporo-cerebellar interface. We discuss these findings in view of the conjecture that proactive adaptation to a dynamic environment via internal models is a generalizable principle.


Neuroreport ◽  
2005 ◽  
Vol 16 (6) ◽  
pp. 649-652 ◽  
Author(s):  
Mikkel Wallentin ◽  
Torben Ellegaard Lund ◽  
Svend ??stergaard ◽  
Leif ??stergaard ◽  
Andreas Roepstorff

2018 ◽  
Vol 2 ◽  
pp. 247054701881523 ◽  
Author(s):  
Jacob Penner ◽  
Elizabeth A. Osuch ◽  
Betsy Schaefer ◽  
Jean Théberge ◽  
Richard W. J. Neufeld ◽  
...  

Background The temporoparietal junction (TPJ) has been linked to lower-level attentional and higher-level social processing, both of which are affected in schizophrenia (SZ) and major depressive disorder (MDD). We examined resting functional connectivity of bilateral anterior and posterior TPJ in SZ and MDD to evaluate potential anomalies in each disorder and differences between disorders. Methods Resting-state functional magnetic resonance imaging data were acquired from 24 patients with SZ, 24 patients with MDD, and 24 age-matched healthy controls. We performed seed-based functional connectivity analyses with seed regions in bilateral anterior and posterior TPJ, covarying for gender and smoking. Results SZ had reduced connectivity versus controls between left anterior TPJ and dorsolateral prefrontal cortex (dlPFC) and posterior cingulate cortex (PCC); between left posterior TPJ and middle cingulate cortex, left dorsal PFC, and right lateral PFC; between right anterior TPJ and bilateral PCC; and between right posterior TPJ and middle cingulate cortex, left posterior insula, and right insula. MDD had reduced connectivity versus controls between left posterior TPJ and right dlPFC and between right posterior TPJ and PCC and dlPFC. SZ had reduced connectivity versus MDD between right posterior TPJ and left fusiform gyrus and right superior-posterior temporal cortex. Conclusion Functional connectivity to the TPJ was demonstrated to be disrupted in both SZ and MDD. However, TPJ connectivity may differ in these disorders with reduced connectivity in SZ versus MDD between TPJ and posterior brain regions.


2011 ◽  
Vol 71 (3) ◽  
pp. 235-243 ◽  
Author(s):  
Koji Ikezawa ◽  
Ryouhei Ishii ◽  
Masao Iwase ◽  
Ryu Kurimoto ◽  
Leonides Canuet ◽  
...  

2018 ◽  
Author(s):  
Graham Flick ◽  
Liina Pylkkänena

ABSTRACTSyntax is the engine that allows us to create an infinitude of linguistic expressions, and the construction of syntactic structures, such as noun phrases and verb phrases, is considered a fundamental component of language processing. Nevertheless, insights concerning the neurobiological basis of syntax have remained elusive, in part because it is difficult to isolate syntax from semantic composition. Consequently, many studies of syntax have relied on meaningless artificial stimuli, such as jabberwocky expressions or artificial grammars. However, while pure manipulations of syntax are challenging to design, natural language grammars do have a sparse set of constructions presenting this possibility. Here we examined one such case, English post-nominal adjectives (mountain TALL enough for a strenuous hike), which were contrasted with semantically parallel but structurally simpler noun-adjective sequences in an MEG experiment. We observed a sharp activity increase in the left posterior temporal lobe (PTL) when syntactic composition was more straightforward, approximately 200 ms after adjective onset. The semantic fit between the noun and adjective was also varied, but this affected anterior temporal cortex, consistent with prior work. These findings offer a unique demonstration of the relevance of posterior temporal cortex for syntactic processing in natural language. We also present connectivity evidence that the syntax-related PTL responses were relayed to ipsilateral inferior frontal and anterior temporal regions. The combined results draw an initial picture of the rapid spatio-temporal dynamics of the syntactic and semantic composition network in sentence processing.


2012 ◽  
Vol 24 (10) ◽  
pp. 2096-2107 ◽  
Author(s):  
Marius V. Peelen ◽  
Domenica Romagno ◽  
Alfonso Caramazza

Verbs and nouns differ not only on formal linguistic grounds but also in what they typically refer to: Verbs typically refer to actions, whereas nouns typically refer to objects. Prior neuroimaging studies have revealed that regions in the left lateral temporal cortex (LTC), including the left posterior middle temporal gyrus (pMTG), respond selectively to action verbs relative to object nouns. Other studies have implicated the left pMTG in action knowledge, raising the possibility that verb selectivity in LTC may primarily reflect action-specific semantic features. Here, using functional neuroimaging, we test this hypothesis. Participants performed a simple memory task on visually presented verbs and nouns that described either events (e.g., “he eats” and “the conversation”) or states (e.g., “he exists” and “the value”). Verb-selective regions in the left pMTG and the left STS were defined in individual participants by an independent localizer contrast between action verbs and object nouns. Both regions showed equally strong selectivity for event and state verbs relative to semantically matched nouns. The left STS responded more to states than events, whereas there was no difference between states and events in the left pMTG. Finally, whole-brain group analysis revealed that action verbs, relative to state verbs, activated a cluster in pMTG that was located posterior to the verb-selective pMTG clusters. Together, these results indicate that verb selectivity in LTC is independent of action representations. We consider other differences between verbs and nouns that may underlie verb selectivity in LTC, including the verb property of predication.


Sign in / Sign up

Export Citation Format

Share Document