Probing the unseen structure and function of liver cells through atomic force microscopy

2018 ◽  
Vol 73 ◽  
pp. 13-30 ◽  
Author(s):  
Filip Braet ◽  
Douglas J. Taatjes ◽  
Eddie Wisse
1994 ◽  
pp. 264-275
Author(s):  
Kunio Takeyasu ◽  
Jose K. Paul ◽  
Mehdi Ganjeizadeh ◽  
M. Victor Lemas ◽  
Shusheng Wang ◽  
...  

2015 ◽  
Vol 44 (11) ◽  
pp. 3617-3638 ◽  
Author(s):  
Yuping Shan ◽  
Hongda Wang

The structure and function of cell membranes were revealed by atomic force microscopy and force spectroscopy at the molecule level.


2001 ◽  
Vol 7 (S2) ◽  
pp. 124-125
Author(s):  
Christopher A. Siedlecki

A widely accepted tenet of biomaterials research is that the initial step following contact of a synthetic material with blood is the rapid adsorption of plasma proteins. The composition of this adsorbed protein layer is dependent on a variety of factors, including the surface properties of the implant material and the nature of the adsorbing proteins, and the composition and function of this protein layer is important in the subsequent biological response and ultimately the success or failure of the implanted material. While a great amount of effort has gone into developing structure/function responses for implanted biomaterials, there is still much about the molecular level interactions to be determined. We utilized atomic force microscopy (AFM) to investigate the molecular-level interactions of proteins with model biomaterial substrates. The AFM is unique in that it offers the opportunity to characterize interfacial environments, determine material properties, measure protein/surface interaction forces, and visualize the tertiary structure of adsorbed proteins.


2013 ◽  
Vol 19 (S4) ◽  
pp. 3-4
Author(s):  
P. Eaton ◽  
J.R.S.A. Leite ◽  
C. Bittencourt ◽  
M. Prudêncio ◽  
M.J. Feio ◽  
...  

In this talk the utility of atomic force microscopy (AFM) for research into infectious parasites will be discussed. AFM has grown from relatively recent beginnings to become an extremely powerful technique in the life sciences, coupling high resolution imaging with a range of non-imaging experiments. Importantly, these experiments can be performed in situ, even on individual molecules or on live cells.The two examples discussed relate to the important diseases leishmaniasis and malaria. Leishmaniasis is a disease caused by the protozoan parasite of the Leishmania genera, and causes approximately 60,000 deaths per year. Despite the high death toll, the disease has been the subject of relatively little research and little treatment is available, probably because the most severe cases are confined to developing nations. The most severe form, visceral leishmaniasis is caused by the species known as Leishmania infantum (syn. L. chagasi). A promising new anti-leishmania drug, DS01 has been recently isolated from amphibian secretions and can kill L. infantum in low concentrations. We were able to culture and prepare for microscopy L. infantum promastigotes for the first time, as well as to study the effects of DS01 on cell morphology and membrane integrity. The results from both AFM and SEM are highly complementary and illustrate the possibility of membrane-focussed activity as well as the possibility of attack on the flagella (figure 1).Malaria is one of the most deadly diseases in the world, killing more than 600,000 people per year, mostly in low-income countries. It is caused by Plasmodium parasites, and the most commonly studied stage is that in which the parasite invades the blood. Prior to blood invasion, the parasites infect hepatocytes in the liver, with formation of a parasitophorous vacuole, where they develop into exoerythrocytic forms and multiply to generate thousands of merozoites, later released into the bloodstream and causing disease. However, infection of liver cells, which is clinically silent, is required for disease progression. We studied infection of liver cells by Plasmodium using combined epifluorescence and atomic force microscopy. We observed significant changes in cell morphology as infection progressed (figure 2). Furthermore we made nanoindentation measurements with the AFM, to determine cellular stiffness. We observed stiffening of the cells after 48 hours of infection compared to uninfected cells. This was a cellular response to the Plasmodium infection, rather than a result of the stiffness of the invading parasites themselves. This stiffening may be caused by reinforcement of cytoskeletal structures, and we believe this may reflect a self-defence mechanism by the cell itself.


Author(s):  
Liang Ma ◽  
Meixiang Xu ◽  
Andres F. Oberhauser

The activity of proteins and their complexes often involves the conversion of chemical energy (stored or supplied) into mechanical work through conformational changes. Mechanical forces are also crucial for the regulation of the structure and function of cells and tissues. Thus, the shape of eukaryotic cells is the result of cycles of mechano-sensing, mechano-transduction, and mechano-response. Recently developed single-molecule atomic force microscopy (AFM) techniques can be used to manipulate single molecules, both in real time and under physiological conditions, and are ideally suited to directly quantify the forces involved in both intra- and intermolecular protein interactions. In combination with molecular biology and computer simulations, these techniques have been applied to characterize the unfolding and refolding reactions in a variety of proteins, such as titin (an elastic mechano-sensing protein found in muscle) and polycystin-1 (PC1, a mechanosensor found in the kidney).


2018 ◽  
Vol 12 (1) ◽  
pp. 86-104 ◽  
Author(s):  
S. Maghsoudy-Louyeh ◽  
M. Kropf ◽  
B. R. Tittmann

The study of biological samples is one of the most attractive and innovative fields of application of atomic force microscopy AFM. Recent breakthroughs in software and hardware have revolutionized this field and this paper reports on recent trends and describes examples of applications on biological samples. Originally developed for high-resolution imaging purposes, the AFM also has unique capabilities as a nano-indentor to probe the dynamic visco-elastic material properties of living cells in culture. In particular, AFM elastography combines imaging and indentation modalities to map the spatial distribution of cell mechanical properties, which in turn reflect the structure and function of the underlying structure. This paper describes the progress and development of atomic force microscopy as applied to animal and plant cell structures.


Author(s):  
Ignacio Casuso ◽  
Lorena Redondo-Morata ◽  
Felix Rico

While many fields have contributed to biological physics, nanotechnology offers a new scale of observation. High-speed atomic force microscopy (HS-AFM) provides nanometre structural information and dynamics with subsecond resolution of biological systems. Moreover, HS-AFM allows us to measure piconewton forces within microseconds giving access to unexplored, fast biophysical processes. Thus, HS-AFM provides a tool to nourish biological physics through the observation of emergent physical phenomena in biological systems. In this review, we present an overview of the contribution of HS-AFM, both in imaging and force spectroscopy modes, to the field of biological physics. We focus on examples in which HS-AFM observations on membrane remodelling, molecular motors or the unfolding of proteins have stimulated the development of novel theories or the emergence of new concepts. We finally provide expected applications and developments of HS-AFM that we believe will continue contributing to our understanding of nature, by serving to the dialogue between biology and physics. This article is part of a discussion meeting issue ‘Dynamic in situ microscopy relating structure and function’.


Sign in / Sign up

Export Citation Format

Share Document