scholarly journals Transmission of chromatin states across generations in C. elegans

Author(s):  
Isa Özdemir ◽  
Florian A. Steiner
Keyword(s):  
2018 ◽  
Author(s):  
Hangnoh Lee ◽  
Brian Oliver

AbstractBackgroundIn animals with XY sex chromosomes, X-linked genes from a single X chromosome in males are imbalanced relative to autosomal genes. To minimize the impact of genic imbalance in male Drosophila, there is a dosage compensation complex (MSL), that equilibrates X-linked gene expression with the autosomes. There are other potential contributions to dosage compensation. Hemizygous autosomal genes located in repressive chromatin domains are often de-repressed. If this homolog-dependent repression occurs on the X, which has no pairing partner, then de-repression could contribute to male dosage compensation.ResultsWe asked whether different chromatin states or topological associations correlate with X chromosome dosage compensation, especially in regions with little MSL occupancy. Our analyses demonstrated that male X chromosome genes that are located in repressive chromatin states are depleted of MSL occupancy, however they show dosage compensation. The genes in these repressive regions were also less sensitive to knockdown of MSL components.ConclusionsOur results suggest that this non-canonical dosage compensation is due to the same trans-acting de-repression that occurs on autosomes. This mechanism would facilitate immediate compensation during the evolution of sex chromosomes from autosomes. This mechanism is similar to that of C. elegans, where enhanced recruitment of X chromosomes to the nuclear lamina dampens X chromosome expression as part of the dosage compensation response in XX individuals.


2019 ◽  
Author(s):  
James M. Bellush ◽  
Iestyn Whitehouse

AbstractDespite highly conserved chromatin states and cis-regulatory elements, studies of metazoan genomes reveal that gene organization and the strategies to control mRNA expression can vary widely among animal species. C. elegans gene regulation is often assumed to be similar to that of other model organisms, yet evidence suggests the existence of distinct molecular mechanisms to pattern the developmental transcriptome, including extensive post-transcriptional RNA control pathways, widespread splice leader (SL) trans-splicing of pre-mRNAs, and the organization of genes into operons. Here, we performed ChIP-seq for histone modifications in highly synchronized embryos cohorts representing three major developmental stages, with the goal of better characterizing whether the dynamic changes in embryonic mRNA expression are accompanied by changes to the chromatin state. We were surprised to find that thousands of promoters are persistently marked by active histone modifications, despite a fundamental restructuring of the transcriptome. We employed global run-on sequencing using a long-read nanopore format to map nascent RNA transcription across embryogenesis, finding that the invariant open chromatin regions are persistently transcribed by Pol II at all stages of embryo development, even though the mature mRNA is not produced. By annotating our nascent RNA sequencing reads into directional transcription units, we find extensive evidence of polycistronic RNA transcription genome-wide, suggesting that nearby genes in C. elegans are linked by shared transcriptional regulatory mechanisms. We present data indicating that the sharing of cis-regulatory sequences has constrained C. elegans gene positioning and likely explains the remarkable retention of syntenic gene pairs over long evolutionary timescales.


2002 ◽  
Vol 69 ◽  
pp. 117-134 ◽  
Author(s):  
Stuart M. Haslam ◽  
David Gems ◽  
Howard R. Morris ◽  
Anne Dell

There is no doubt that the immense amount of information that is being generated by the initial sequencing and secondary interrogation of various genomes will change the face of glycobiological research. However, a major area of concern is that detailed structural knowledge of the ultimate products of genes that are identified as being involved in glycoconjugate biosynthesis is still limited. This is illustrated clearly by the nematode worm Caenorhabditis elegans, which was the first multicellular organism to have its entire genome sequenced. To date, only limited structural data on the glycosylated molecules of this organism have been reported. Our laboratory is addressing this problem by performing detailed MS structural characterization of the N-linked glycans of C. elegans; high-mannose structures dominate, with only minor amounts of complex-type structures. Novel, highly fucosylated truncated structures are also present which are difucosylated on the proximal N-acetylglucosamine of the chitobiose core as well as containing unusual Fucα1–2Gal1–2Man as peripheral structures. The implications of these results in terms of the identification of ligands for genomically predicted lectins and potential glycosyltransferases are discussed in this chapter. Current knowledge on the glycomes of other model organisms such as Dictyostelium discoideum, Saccharomyces cerevisiae and Drosophila melanogaster is also discussed briefly.


2020 ◽  
Vol 48 (3) ◽  
pp. 1019-1034 ◽  
Author(s):  
Rachel M. Woodhouse ◽  
Alyson Ashe

Gene regulatory information can be inherited between generations in a phenomenon termed transgenerational epigenetic inheritance (TEI). While examples of TEI in many animals accumulate, the nematode Caenorhabditis elegans has proven particularly useful in investigating the underlying molecular mechanisms of this phenomenon. In C. elegans and other animals, the modification of histone proteins has emerged as a potential carrier and effector of transgenerational epigenetic information. In this review, we explore the contribution of histone modifications to TEI in C. elegans. We describe the role of repressive histone marks, histone methyltransferases, and associated chromatin factors in heritable gene silencing, and discuss recent developments and unanswered questions in how these factors integrate with other known TEI mechanisms. We also review the transgenerational effects of the manipulation of histone modifications on germline health and longevity.


Sign in / Sign up

Export Citation Format

Share Document