dosage compensation complex
Recently Published Documents


TOTAL DOCUMENTS

57
(FIVE YEARS 5)

H-INDEX

25
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Richard P Meisel ◽  
Danial Asgari ◽  
Florencia Schlamp ◽  
Robert L Unckless

Sex chromosome gene content frequently differs from that of the autosomes, a phenomenon that can be informative of the effects of chromatin environment, sex-specific selection, recombination, and ploidy on genome evolution. For example, the Drosophila X chromosome is depauperate in genes with male-biased expression or limited expression in specific tissues—in particular those expressed in the accessory gland of the male reproductive tract. Multiple hypotheses have been put forth to explain the unique gene content of the X chromosome, including selection against male-beneficial X-linked alleles, expression limits imposed by the haploid dosage of the X in males, and interference by the dosage compensation complex (DCC) on expression in males. Here, we investigate these hypotheses by examining differential gene expression in Drosophila melanogaster following several treatments known to have widespread transcriptomic effects: bacterial infection, viral infection, and abiotic stress. We found that genes that are induced (up-regulated) by these biotic and abiotic treatments are frequently under-represented on the X chromosome, but so are those that are repressed (down-regulated) following treatment. We further show that whether a gene is bound by the DCC in males can largely explain the paucity of both up- and down-regulated genes on the X chromosome. Specifically, genes that are bound by the DCC are unlikely to be up- or down-regulated after treatment. Moreover, genes that are closer to a high-affinity site where the DCC is thought to initiate binding to the X chromosome experience a smaller change in expression following treatment. This relationship, however, could partially be explained by a correlation between differential expression and breadth of expression across tissues. Nonetheless, our results suggest that DCC binding, or the associated chromatin modifications, inhibit both up- and down-regulation of X chromosome gene expression within specific contexts. This effect could explain why the Drosophila X chromosome is depauperate in genes with tissue-specific expression, in addition to the paucity of X-linked genes differentially expressed after biotic or abiotic treatments. We propose multiple possible mechanisms of action for the effect, including a role of Males absent on the first (Mof), a component of the DCC, as a dampener of gene expression variance in both males and females.


2020 ◽  
Author(s):  
Valentin Babosha ◽  
Natalia Klimenko ◽  
Evgeniya Tikhonova ◽  
Alexander Shilovich ◽  
Pavel Georgiev ◽  
...  

ABSTRACTThe male-specific lethal dosage compensation complex (MSL complex or DCC), which consists of five proteins and two non-coding roX RNAs, is necessary for the transcriptional enhancement of X-linked genes to compensate for the sex chromosome monosomy in Drosophila XY males, compared with XX females. MSL2 is a single protein component of the DCC that is expressed only in males and is essential for the specific recruitment of the DCC to the high-affinity “entry” sites (HASs) on the X chromosome. MSL2, together with MSL1, forms the heterotetrameric DCC core. Here, we demonstrated that the N-terminal unstructured region of MSL1 interacts with many different DNA-binding proteins that contain clusters of the C2H2 zinc-finger domains. Amino acid deletions in the N-terminal region of MSL1 strongly affect the binding of the DCC to the HASs on the male X chromosome. However, the binding of MSL2 to autosomal promoters was unaffected by amino acid deletions in MSL1. Males expressing mutant variants of MSL1 died during the larvae stage, demonstrating the critical role played by the N-terminal region in DCC activity. Our results suggest that MSL1 interacts with a variety of DNA-binding proteins to increase the specificity of DCC recruitment to the male X chromosome.BulletsThe N-terminal region of MSL1 interacts with 14 C2H2-type zinc-finger DNA-binding proteinsThe N-terminus of MSL1 is critical for the specific recruitment of the MSL complex to the X chromosomeThe N-terminus of MSL1 is important for the binding of MSL2 to a small fraction of autosomal promoters


2019 ◽  
Author(s):  
Sheng-Hu Qian ◽  
Lu Chen ◽  
Zhen-Xia Chen

AbstractThe evolution of sex chromosomes has resulted in half X chromosome dosage in males as females. Dosage compensation, or the two-fold upregulation in males, was thus evolved to balance the gene expression between sexes. However, the step-wise evolutionary trajectory of dosage compensation during Y chromosome degeneration is still unclear. Here, we show that the specific structured elements G-quadruplexes (G4s) are enriched on the X chromosome in Drosophila melanogaster. Meanwhile, on the X chromosome, the G4s are underrepresented on the H4K16 acetylated regions and the binding sites of dosage compensation complex male-specific lethal (MSL) complex. Peaks of G4 density and potential are observed at the flanking regions of MSL binding sites, suggesting G4s act as insulators to precisely up-regulate certain regions in males. Thus, G4s may be involved in the evolution of dosage compensation process through fine-tuning one-dose proto-X chromosome regions around MSL binding sites during the gradual Y chromosome degeneration.One Sentence SummaryG-quadruplexes act as insulators to precisely up-regulate X chromosome in males.


2019 ◽  
Author(s):  
Deo Prakash Chaturvedi

AbstractHyperactivity of the single X-chromosome in male Drosophila is achieved by establishing a ribonucleoprotein complex, called Dosage Compensation Complex (DCC), on the male X chromosome. Msl-1 and Msl-2 proteins, involved in the initiation and establishing of DCC on male X chromosome, are very crucial component of this complex. In the present study, it has been found here that a long non-coding RNA gene hsrω genetically interacts with Msl-1 as well as Msl-2 and suppresses the lethal phenotype of Msl-1 or Msl-2 down-regulation in its up-regulated background. Additionally, it is also found here that an ATP-dependent chromatin remodeler, NURF301, also interacts with hsrω in same manner. General lethality caused by Act-GAL4 driven global expression of NURF301-RNAi and the male-specific lethality following Msl-1-RNAi or Msl-2-RNAi transgene expression were partially suppressed by over-expression of hsrω, but not by down regulation through hsrω-RNAi. Likewise, eye phenotypes following ey-GAL4 driven down-regulation of NURF301 or Msl-1 or Msl-2 were also partially suppressed by over-expression of hsrω. Act-GAL4 driven global over-expression of hsrω along with Msl-1-RNAi or Msl-2-RNAi transgene substantially restored levels of MSL-2 protein on the male X chromosome. Similarly, levels and distribution of Megator protein, which was reduced and distribution at nuclear rim and in nucleoplasm was affected in the MT and SG nuclei, is also restored when hsrω transcripts are down-regulated in Act-GAL4 driven Msl-1-RNAi or Msl-2-RNAi genetic background. NURF301, a known chromatin remodeler, when down-regulated shows decondensed X chromosome in male larvae. Down-regulation of hsrω results in restoration of chromosome architecture without affecting the level of ISWI protein-another chromatin remodeler protein, known to interacting with hsrω.


2018 ◽  
Vol 115 (52) ◽  
pp. 13336-13341 ◽  
Author(s):  
Ömer Copur ◽  
Andrey Gorchakov ◽  
Katja Finkl ◽  
Mitzi I. Kuroda ◽  
Jürg Müller

Acetylation of histone H4 at lysine 16 (H4K16) modulates nucleosome–nucleosome interactions and directly affects nucleosome binding by certain proteins. In Drosophila, H4K16 acetylation by the dosage compensation complex subunit Mof is linked to increased transcription of genes on the single X chromosome in males. Here, we analyzed Drosophila containing different H4K16 mutations or lacking Mof protein. An H4K16A mutation causes embryonic lethality in both sexes, whereas an H4K16R mutation permits females to develop into adults but causes lethality in males. The acetyl-mimic mutation H4K16Q permits both females and males to develop into adults. Complementary analyses reveal that males lacking maternally deposited and zygotically expressed Mof protein arrest development during gastrulation, whereas females of the same genotype develop into adults. Together, this demonstrates the causative role of H4K16 acetylation by Mof for dosage compensation in Drosophila and uncovers a previously unrecognized requirement for this process already during the onset of zygotic gene transcription.


2018 ◽  
Author(s):  
Edridge D’Souza ◽  
Elizaveta Hosage ◽  
Kathryn Weinand ◽  
Steve Gisselbrecht ◽  
Vicky Markstein ◽  
...  

ABSTRACTOver 50 years ago, Susumo Ohno proposed that dosage compensation in mammals would require upregulation of gene expression on the single active X chromosome, a mechanism which to date is best understood in the fruit fly Drosophila melanogaster. Here, we report that the GA-repeat sequences that recruit the conserved MSL dosage compensation complex to the Drosophila X chromosome are also enriched across mammalian X chromosomes, providing genomic support for the Ohno hypothesis. We show that mammalian GA-repeats derive in part from transposable elements, suggesting a mechanism whereby unrelated X chromosomes from dipterans to mammals accumulate binding sites for the MSL dosage compensation complex through convergent evolution, driven by their propensity to accumulate transposable elements.


2018 ◽  
Author(s):  
Hangnoh Lee ◽  
Brian Oliver

AbstractBackgroundIn animals with XY sex chromosomes, X-linked genes from a single X chromosome in males are imbalanced relative to autosomal genes. To minimize the impact of genic imbalance in male Drosophila, there is a dosage compensation complex (MSL), that equilibrates X-linked gene expression with the autosomes. There are other potential contributions to dosage compensation. Hemizygous autosomal genes located in repressive chromatin domains are often de-repressed. If this homolog-dependent repression occurs on the X, which has no pairing partner, then de-repression could contribute to male dosage compensation.ResultsWe asked whether different chromatin states or topological associations correlate with X chromosome dosage compensation, especially in regions with little MSL occupancy. Our analyses demonstrated that male X chromosome genes that are located in repressive chromatin states are depleted of MSL occupancy, however they show dosage compensation. The genes in these repressive regions were also less sensitive to knockdown of MSL components.ConclusionsOur results suggest that this non-canonical dosage compensation is due to the same trans-acting de-repression that occurs on autosomes. This mechanism would facilitate immediate compensation during the evolution of sex chromosomes from autosomes. This mechanism is similar to that of C. elegans, where enhanced recruitment of X chromosomes to the nuclear lamina dampens X chromosome expression as part of the dosage compensation response in XX individuals.


2018 ◽  
Author(s):  
Evgeniya Tikhonova ◽  
Anna Fedotova ◽  
Artem Bonchuk ◽  
Vladic Mogila ◽  
Erica N. Larschan ◽  
...  

AbstractThe binding of Drosophila male-specific lethal (MSL) dosage compensation complex exclusively to male X chromosome provides an excellent model system to understand mechanisms of selective recruitment of protein complexes to chromatin. Previous studies showed that the male-specific organizer of the complex, MSL2, and ubiquitous DNA-binding protein CLAMP are key players in the specificity of X chromosome binding. The CXC domain of MSL2 binds to genomic sites of MSL complex recruitment. Here we demonstrated that MSL2 directly interacts with the N-terminal zinc-finger domain of CLAMP. CLAMP-MSL2 and CXC-DNA interactions are cooperatively involved in recruitment of MSL complex to the X chromosome.


Cell Reports ◽  
2018 ◽  
Vol 22 (12) ◽  
pp. 3227-3239 ◽  
Author(s):  
Emily G. Kaye ◽  
Matthew Booker ◽  
Jesse V. Kurland ◽  
Alexander E. Conicella ◽  
Nicolas L. Fawzi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document