gene positioning
Recently Published Documents


TOTAL DOCUMENTS

42
(FIVE YEARS 17)

H-INDEX

20
(FIVE YEARS 2)

Author(s):  
Rampura K. Likhith ◽  
Ganesh Alagarasan ◽  
Raveendran Muthurajan ◽  
Boominathan Parasuraman ◽  
Rajesh Subramanian

Abstract Mungbean (Vigna radiata L. Wilczek) an important legume crop with valuable nutritional and health benefits is severely affected by drought conditions. Desiccation tolerance is a capacity of seeds to survive and maintain physiological activities during storage and stress conditions. LEA proteins are group of stress associated proteins that help the plants survive water deficit stress. Here we have performed genome-wide analysis of mungbean LEA (VrLEA) genes, and also insilico physical/functional characterization. Gene-positioning showed that 307 VrLEAs are present in all the eleven chromosomes, but are unevenly distributed.Upstream promoter sequence analysis of LEA genes revealed the occurrence of MYB transcription factor (TF)in higher number compared to other TFs i.e., bZIP, AP2, WRKY, NAC and bHLH.Further, we downstreamed our analysis to fewer VrLEAs, based on drought responsive data. The VrLEAs obtained from the earlier experimental data were examined for its organelle localization and found that they are intracellular functional proteins.


Cancers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 5860
Author(s):  
Concetta Federico ◽  
Francesca Bruno ◽  
Denise Ragusa ◽  
Craig S. Clements ◽  
Desiree Brancato ◽  
...  

The last decade has seen significant progress in understanding how the genome is organized spatially within interphase nuclei. Recent analyses have confirmed earlier molecular cytogenetic studies on chromosome positioning within interphase nuclei and provided new information about the topologically associated domains (TADs). Examining the nuances of how genomes are organized within interphase nuclei will provide information fundamental to understanding gene regulation and expression in health and disease. Indeed, the radial spatial positioning of individual gene loci within nuclei has been associated with up- and down-regulation of specific genes, and disruption of normal genome organization within nuclei will result in compromised cellular health. In cancer cells, where reorganization of the nuclear architecture may occur in the presence of chromosomal rearrangements such as translocations, inversions, or deletions, gene repositioning can change their expression. To date, very few studies have focused on radial gene positioning and the correlation to gene expression in cancers. Further investigations would improve our understanding of the biological mechanisms at the basis of cancer and, in particular, in leukemia initiation and progression, especially in those cases where the molecular consequences of chromosomal rearrangements are still unclear. In this review, we summarize the main milestones in the field of genome organization in the nucleus and the alterations to this organization that can lead to cancer diseases.


2021 ◽  
Vol 12 ◽  
Author(s):  
Anis Meschichi ◽  
Mathieu Ingouff ◽  
Claire Picart ◽  
Marie Mirouze ◽  
Sophie Desset ◽  
...  

Together with local chromatin structure, gene accessibility, and the presence of transcription factors, gene positioning is implicated in gene expression regulation. Although the basic mechanisms are expected to be conserved in eukaryotes, less is known about the role of gene positioning in plant cells, mainly due to the lack of a highly resolutive approach. In this study, we adapted the use of the ANCHOR system to perform real-time single locus detection in planta. ANCHOR is a DNA-labeling tool derived from the chromosome partitioning system found in many bacterial species. We demonstrated its suitability to monitor a single locus in planta and used this approach to track chromatin mobility during cell differentiation in Arabidopsis thaliana root epidermal cells. Finally, we discussed the potential of this approach to investigate the role of gene positioning during transcription and DNA repair in plants.


Author(s):  
Azumi Noguchi ◽  
Kenji Ito ◽  
Yuichi Uosaki ◽  
Maky Ideta-Otsuka ◽  
Katsuhide Igarashi ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Jade Bishop ◽  
Hetty Swan ◽  
Francesco Valente ◽  
Hans-Wilhelm Nützmann

Chromosomes are dynamic entities in the eukaryotic nucleus. During cell development and in response to biotic and abiotic change, individual sections as well as entire chromosomes re-organise and reposition within the nuclear space. A focal point for these processes is the nuclear envelope (NE) providing both barrier and anchor for chromosomal movement. In plants, positioning of chromosome regions and individual genes at the nuclear envelope has been shown to be associated with distinct transcriptional patterns. Here, we will review recent findings on the interplay between transcriptional activity and gene positioning at the nuclear periphery (NP). We will discuss potential mechanisms of transcriptional regulation at the nuclear envelope and outline future perspectives in this research area.


2021 ◽  
Author(s):  
Anis Meschichi ◽  
Mathieu Ingouff ◽  
Claire Picart ◽  
Marie Mirouze ◽  
Sophie Desset ◽  
...  

RESUMEGene expression is governed by several layers of regulation which in addition to genome organization, local chromatin structure, gene accessibility and the presence of transcription factors also includes gene positioning. Although basic mechanisms are expected to be conserved in Eukaryotes, surprisingly little information on the role of gene positioning is available in plant cells, mainly due to the lack of a highly resolutive approach. In this manuscript, we adapted the use of the ANCHOR system to perform real-time single-locus detection in planta. ANCHOR is a DNA-labelling tool derived from the partitioning system. We demonstrate its suitability to monitor a single-locus in planta and used this approach to track chromatin mobility during cell differentiation in Arabidopsis root epidermal cells. Finally, we discuss the potential of this approach to investigate the role of gene positioning during transcription and DNA repair in plants.


2021 ◽  
Vol 22 (5) ◽  
pp. 2338
Author(s):  
Gesualda M. Gulino ◽  
Francesca Bruno ◽  
Valentina Sturiale ◽  
Desiree Brancato ◽  
Denise Ragusa ◽  
...  

Fluorescence in situ hybridization (FISH) and Hi-C methods are largely used to investigate the three-dimensional organization of the genome in the cell nucleus and are applied here to study the organization of genes (LMBR1, NOM1, MNX1, UBE3C, PTPRN2) localized in the human 7q36.3 band. This region contains the MNX1 gene, which is normally not expressed in human lymphocytes beyond embryonic development. However, this homeobox gene is frequently activated in leukemic cells and its expression is associated with an altered gene positioning in the leukemia cell nuclei. In this study, we used FISH on 3D-preserved nuclei to investigate the nuclear positioning of MNX1 in the leukemia-derived cell line K562. Of the five copies of the MNX1 gene present in K562, four alleles were positioned in the nuclear periphery and only one in the nuclear interior. Using the Juicebox’s Hi-C dataset, we identified five chromatin loops in the 7q36.3 band, with different extensions related to the size and orientation of the genes located here, and independent from their expression levels. We identified similar loops in 11 human and three mouse cell lines, showing that these loops are highly conserved in different human cell lines and during evolution. Moreover, the chromatin loop organization is well conserved also during neuronal cell differentiation, showing consistency in genomic organization of this region in development. In this report, we show that FISH and Hi-C are two different approaches that complement one another and together give complete information on the nuclear organization of specific chromosomal regions in different conditions, including cellular differentiation and genetic diseases.


Author(s):  
Leonardo Gatticchi ◽  
Jose I. de las Heras ◽  
Aishwarya Sivakumar ◽  
Nikolaj Zuleger ◽  
Rita Roberti ◽  
...  

Tissue-specific patterns of radial genome organization contribute to genome regulation and can be established by nuclear envelope proteins. Studies in this area often use cancer cell lines, and it is unclear how well such systems recapitulate genome organization of primary cells or animal tissues; so, we sought to investigate radial genome organization in primary liver tissue hepatocytes. Here, we have used a NET47/Tm7sf2–/– liver model to show that manipulating one of these nuclear membrane proteins is sufficient to alter tissue-specific gene positioning and expression. Dam-LaminB1 global profiling in primary liver cells shows that nearly all the genes under such positional regulation are related to/important for liver function. Interestingly, Tm7sf2 is a paralog of the HP1-binding nuclear membrane protein LBR that, like Tm7sf2, also has an enzymatic function in sterol reduction. Fmo3 gene/locus radial mislocalization could be rescued with human wild-type, but not TM7SF2 mutants lacking the sterol reductase function. One central pathway affected is the cholesterol synthesis pathway. Within this pathway, both Cyp51 and Msmo1 are under Tm7sf2 positional and expression regulation. Other consequences of the loss of Tm7sf2 included weight gain, insulin sensitivity, and reduced levels of active Akt kinase indicating additional pathways under its regulation, several of which are highlighted by mispositioning genes. This study emphasizes the importance for tissue-specific radial genome organization in tissue function and the value of studying genome organization in animal tissues and primary cells over cell lines.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Yuki Sakamoto ◽  
Mayuko Sato ◽  
Yoshikatsu Sato ◽  
Akihito Harada ◽  
Takamasa Suzuki ◽  
...  

AbstractThe nuclear lamina plays an important role in the regulation of chromatin organization and gene positioning in animals. CROWDED NUCLEI (CRWN) is a strong candidate for the plant nuclear lamina protein in Arabidopsis thaliana but its biological function was largely unknown. Here, we show that CRWNs localize at the nuclear lamina and build the meshwork structure. Fluorescence in situ hybridization and RNA-seq analyses revealed that CRWNs regulate chromatin distribution and gene expression. More than 2000 differentially expressed genes were identified in the crwn1crwn4 double mutant. Copper-associated (CA) genes that form a gene cluster on chromosome 5 were among the downregulated genes in the double mutant exhibiting low tolerance to excess copper. Our analyses showed this low tolerance to copper was associated with the suppression of CA gene expression and that CRWN1 interacts with the CA gene locus, enabling the locus to localize at the nuclear lamina under excess copper conditions.


Author(s):  
Gat Krieger ◽  
Offir Lupo ◽  
Avraham A. Levy ◽  
Naama Barkai

AbstractChanges in gene expression drive novel phenotypes, raising interest in how gene expression evolves. In contrast to the static genome, cells regulate gene expression to accommodate changing conditions. Previous comparative studies focused on specific conditions, describing inter-species variation in expression levels, but providing limited information about variations in gene regulation. To close this gap, we profiled gene expression of related yeast species in hundreds of conditions, and used co-expression analysis to distinguish variations in transcription regulation from variations in expression levels or environmental perception. The majority of genes whose expression varied between the species maintained a conserved transcriptional regulation. Profiling the interspecific hybrid provided insights into the basis of variations, showed that trans-varying alleles interact dominantly, and revealed complementation of cis-variations by variations in trans. Our data suggests that gene expression diverges primarily through changes in promoter strength that do not alter gene positioning within the transcription network.


Sign in / Sign up

Export Citation Format

Share Document