Separation of elemental sulfur from zinc concentrate direct leaching residue by vacuum distillation

2014 ◽  
Vol 138 ◽  
pp. 41-46 ◽  
Author(s):  
Hailong Li ◽  
Xianying Wu ◽  
Mingxia Wang ◽  
Jun Wang ◽  
Shaokang Wu ◽  
...  
Author(s):  
N.G. Picazo-Rodríguez ◽  
F.R. Carrillo-Pedroza ◽  
Martínez Luévanos ◽  
M.J. Soria-Aguilar ◽  
I. Almaguer-Guzmán

This paper reports the effect of the components of a direct leaching residue (jarosite and elemental sulfur), on the recovery of valuable metals such as gold and silver. Leaching media such as cyanide and mixtures of cyanide with glycine were used to recover the gold and silver from the residue; however, a low recovery of these metals was obtained. The above due to the negative effect of its components which cause problems in the extraction process such as encapsulation of silver (due to jarosite) and the formation of thiocyanate and re-precipitation of silver (due to sulfur). Various treatments prior to leaching were tested, finding that when the residue is desulfurized with perchlorethylene and subjected to an oxidizing alkaline hydrothermal treatment, the gold extraction increased from 39.73 to 88% and the silver extraction of 64.76 to 94.29%. Additionally, it was determined that when cyanide is assisted by glycine, the latter decreases the cyanide consumption by inhibition of the dissolution of iron and sulfur in cyanide.


2020 ◽  
Vol 56 (2) ◽  
pp. 247-255
Author(s):  
Y.-Y. Fan ◽  
Y. Liu ◽  
L.-P. Niu ◽  
T. Jing ◽  
T.-A. Zhang

The purpose of this study was to select and propose an applicable method for extracting lead from sphalerite concentrate direct leaching residue. A large number of experiments were conducted to extract lead from sphalerite concentrate direct leaching residue by hydrochloric acid and sodium chloride solution as leachates. The main optimum parameters were determined, such as a liquid-solid ratio of 17.5-1, a reaction temperature of 85?C, an initial hydrochloric acid concentration of 1.3 mol/L, an initial sodium chloride concentration of 300 g/L, and a reaction time of 60 min. Ninety-five percent of the zinc, 96.0% of the iron, and 93.7% of the lead were extracted into leachate at the optimum conditions. The lead in the leachate was in the form of [PbCl4]2-. After the leachate was purified to remove impurities, it was converted into lead oxalate by sodium oxalate as a precipitant. Finally, lead oxalate was decomposed to obtain lead oxide powders via a high-temperature calcination process.


Minerals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 89
Author(s):  
Guiqing Liu ◽  
Kaixi Jiang ◽  
Bangsheng Zhang ◽  
Zhonglin Dong ◽  
Fan Zhang ◽  
...  

An efficient flotation process was developed to selectively recover elemental sulfur from a high-sulfur pressure acid leaching residue of zinc sulfide concentrate. The process mineralogy analysis showed that the sulfur content reached 46.21%, and 81.97% of the sulfur existed as elemental sulfur which was the major mineral in the residue and primarily existed as pellet aggregate and biconical euhedral crystal. An elemental sulfur concentrate product with 99.9% of recovery and 83.46% of purity was obtained using the flotation process of one-time blank rougher, two-time agent-added roughers, and two-time cleaners with Z-200 as collector and Na2S + ZnSO4 + Na2SO3 as depressant. The flotation experiment using return water indicated that the cycle use of return water had no adverse effect on the flotation performance of elemental sulfur. The process mineralogy analysis manifested that main minerals in the residue directionally went into the flotation products. Most of elemental sulfur entered the concentrate while other minerals almost completely went into the tailing. Main valuable elements lead, zinc, and silver entered the tailing with sulfides and could be recovered by lead smelting. The proposed process can realize the comprehensive recovery of valuable components in the high-sulfur residue and thus it has wide industrial application prospect.


2020 ◽  
pp. 11-18
Author(s):  
N. K. Dosmukhamedov ◽  
E. E. Zholdasbay ◽  
A. A. Argyn ◽  
M. B. Kurmanseitov

The practicability of improving the existing technology of converting copper mattes by comelting with the difficult-toprocess high-sulfur copper-zinc concentrate. The basis for research in the behavior of non-ferrous metals, arsenic and antimony is thermodynamic analysis of the reactions of matte components, converter slag and copper-zinc concentrate interaction in the temperature range 1073–1573 K. The behaviour mechanism of copper, zinc, lead, arsenic, and antimony compounds during co-processing of copper-zinc concentrate with matte is established. High values of the Gibbs free energy of reactions of interaction between oxides of lead and zinc with elemental sulfur, sulfides of non-ferrous metals and iron show the feasibility of the highest possible extraction of lead and zinc into dust in the form of their volatile compounds: sulfides, as well as oxides of lead and zinc in the metallic state in the form of gas. There is shown the possibility of the highest possible extraction of arsenic and antimony into dust by means of converting their nonvolatile pentavalent oxides (As2O5, Sb2O5) into volatile trivalent oxides (As2O3, Sb2O3) and non-toxic sulfides (As2S3, Sb2S3) by the converter slag sulfidizing with the components of copper–zinc concentrate: elemental sulfur and iron sulfide. Direct processing of copper-zinc concentrate in converter allows selective extracting copper into matte as well as lead and zinc into a rich semiproduct suitable for their extraction by existing technologies. It is shown that a significant quality improvement of the resulting converter slag and blister copper is achieved by the high sublimation of arsenic and antimony into dust under conditions of converting copper-lead mattes together with a high-sulfur concentrate.


2001 ◽  
Vol 48 (1) ◽  
pp. 37-43 ◽  
Author(s):  
Atsushi SHIBAYAMA ◽  
Sakiko KAGAYA ◽  
Toshio MIYAZAKI ◽  
Eiichi KUZUNO ◽  
Toyohisa FUJITA ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document