scholarly journals Influence of the reactor configuration and the supporting electrolyte concentration on the electrochemical oxidation of Atenolol using BDD and SnO2 ceramic electrodes

2020 ◽  
Vol 241 ◽  
pp. 116684 ◽  
Author(s):  
J. Mora-Gómez ◽  
M. García-Gabaldón ◽  
J. Carrillo-Abad ◽  
M.T. Montañés ◽  
S. Mestre ◽  
...  
2012 ◽  
Vol 518-523 ◽  
pp. 2539-2542 ◽  
Author(s):  
Jun Sheng Hu ◽  
Jia Li Dong ◽  
Ying Wang ◽  
Lei Guan ◽  
Ying Yong Duan

By the static experiment, we studied the electrochemical oxidation process of simulated hydroquinone wastewater (concentration for 300mg•L-1) in the three-dimensional cell. Experimental inspected how various factors of the packing quality ratio, electrolysis voltage, supporting electrolyte concentration, and the initial pH value influence the effect of the removal of hydroquinone and CODCr. The results of the experiment clearly indicated with the increase of voltage applied the removal rate of hydroquinone and CODCr increased first and then decreased, finally and increased again. In the weak alkali conditions (pH=8.5), the removal rate of hydroquinone and CODCr is the highest, Electrolyte concentration and packing quality ratio to the effect of hydroquinone by electrochemical degradation is the larger. The results of the single factor analysis show that the most suitable processing conditions of simulated hydroquinone wastewater by bipolar electrocatalysis oxidation are the Na2SO4 concentration of 0.03mol•L-1, the electrolytic voltage of 6V, the initial pH value of 8.5, the packing quality ratio of 1:2. With this condition processing 3h, the removal rate of hydroquinone and CODCr reached 83.96% and 39.9%, respectively.


Author(s):  
Agnieszka Nosal-Wiercińska ◽  
Marlena Martyna ◽  
Sławomira Skrzypek ◽  
Anna Szabelska ◽  
Małgorzata Wiśniewska

AbstractThe paper discusses the electroreduction of Bi(III) ions in the aspect of expanding the “cap-pair” effect.The “cap-pair” rule is associated with the acceleration of the electrode’s processes by organic substances. The interpretation of the “cap-pair” effect mechanism was expanded to include the effect of supporting electrolyte concentration on the acceleration process and the type of electrochemical active as well as used protonated organic substances. It has also been shown that the phenomena occurring at the electrode/solution interface can influence a change in the dynamics of the electrode’s process according to the “cap-pair” rule.


1981 ◽  
Vol 36 (3) ◽  
pp. 386-390 ◽  
Author(s):  
G. Abou-Elenien ◽  
J. Rieser ◽  
N. Ismail ◽  
K. Wallenfels

AbstractThe electrochemical oxidation and reduction properties of different dihydropyridines and pyridines have been investigated in non aqueous solvent as benzonitrile and aceto-nitrile with tetra-n-butylammonium perchlorate as supporting electrolyte at platinium electrodes using DC-voltametry, cycl. voltametry and coulometry. Possible redox-mechanisms are discussed.


2015 ◽  
Vol 50 (4) ◽  
pp. 305-313
Author(s):  
Sajjad Khezrianjoo ◽  
Hosakere Doddarevanna Revanasiddappa

The present investigation showed that the indicator dye m-cresol purple (mCP) was degraded in a laboratory scale, undivided electrolysis cell system. A platinum anode was used for generation of chlorine in the dye solution. The influence of supporting electrolyte, applied voltage, pH, initial dye concentration and temperature were studied. The ultraviolet-visible spectra of samples during the electrochemical oxidation showed rapid decolorization of the dye solution. During the electrochemical degradation process, dye concentration and current were measured to evaluate the energy consumption and current efficiency. After 10 minutes of electrolysis, a solution containing 20 mg/L mCP showed complete color removal at a supporting electrolyte concentration of 1 g/L NaCl, initial pH 6.7, temperature 25 °C and applied voltage 5 V; however, when pH was kept at 6.7, a higher rate constant was observed. There was good fit of the data to pseudo-first-order kinetics for dye removal in all experiments. Dependence of the decolorization rate on the initial mCP concentration can be described as roα[mCP]o−0.98. The apparent activation energy for the electrochemical decolorization of mCP was determined to be −6.29 kJ/mol.


2013 ◽  
Vol 295-298 ◽  
pp. 1258-1262
Author(s):  
Jun Sheng Hu ◽  
Lei Guan ◽  
Jia Li Dong ◽  
Ying Wang ◽  
Ying Yong Duan

Using electrochemical oxidation method treats the acid red 3R simulation wastewater, investigates the influence of current density, electrolyte concentration, pH-value and aeration and their interaction on the removal rate of chroma. Through the design of Box-Benhnken Design(BBD) and the response surface analysis, the influence sequence of all variables is current density > aeration > electrolyte concentration > pH-value, the influence sequence of all interaction is electrolyte concentration-aeration > current density-aeration ,electrolyte concentration-pH value > current density-pH value > pH value-aeration > current density-electrolyte concentration. Ultimately, the optimal value is 98.4915% under the condition of current density of 6.51mA/cm2,electrolyte concentration of 0.04mol/L,pH-value of 4.17 and aeration of 0.24m3/h.


2019 ◽  
Vol 19 (11) ◽  
pp. 7308-7314
Author(s):  
Jinyan Li ◽  
Qingsong Guan ◽  
Junming Hong ◽  
Chang-Tang Chang

Composite electrodes with different graphene (GN)/TiO2 ratios and nano-activated carbon electrodes were prepared for electrocatalytic performance comparison. The electrodes were loaded with platinum (Pt) by use of chloroplatinic acid to promote their performance. Reactive Black 5 (RBk5) dye wastewater was treated as a challenging pollutant by use of advanced electrochemical oxidation technology. The composite materials were characterized by Transmission Electron Microscope (TEM), Field Emission Scanning Electron Microscopy (FE-SEM), and Energy Disperse Spectroscopy (EDS). Results showed that the graphene electrode was prepared successfully and verified because all elements were uniformly loaded on the conductive carbon cloth. The effects of several operating parameters including material types, pH, initial concentration of RBk5, and current density on the removal performance of RBk5 were also assessed. The supporting electrolyte was NaCl solution of 1 g L−1. The concentration of RBk5 was detected using an ultraviolet spectrophotometer with a detection wavelength of 600 nm. The optimum parameters of the experiment were GN/TiO2 ratio of 1:4 and pH of 6.6. The removal efficiency of RBk5 could be higher than 95% under an initial concentration of RBk5 of 5 ppm and a current density of 2.5 mA·cm-2 when reaction time was 30 min.


2010 ◽  
Vol 61 (5) ◽  
pp. 1257-1266 ◽  
Author(s):  
Soraya Mohajeri ◽  
Hamidi Abdul Aziz ◽  
Mohamed Hasnain Isa ◽  
Mohammad Ali Zahed ◽  
Mohammed J. K. Bashir ◽  
...  

In the present study, Electrochemical Oxidation was used to remove COD and color from semi-aerobic landfill leachate collected from Pulau Burung Landfill Site (PBLS), Penang, Malaysia. Experiments were conducted in a batch laboratory-scale system in the presence of NaCl as electrolyte and aluminum electrodes. Central composite design (CCD) under Response surface methodology (RSM) was applied to optimize the electrochemical oxidation process conditions using chemical oxygen demand (COD) and color removals as responses, and the electrolyte concentrations, current density and reaction time as control factors. Analysis of variance (ANOVA) showed good coefficient of determination (R2) values of >0.98, thus ensuring satisfactory fitting of the second-order regression model with the experimental data. In un-optimized condition, maximum removals for COD (48.77%) and color (58.21%) were achieved at current density 80 mA/cm2, electrolyte concentration 3,000 mg/L and reaction time 240 min. While after optimization at current density 75 mA/cm2, electrolyte concentration 2,000 mg/L and reaction time 218 min a maximum of 49.33 and 59.24% removals were observed for COD and color respectively.


Sign in / Sign up

Export Citation Format

Share Document