DFT-Based Investigation of Amic-Acid Extractants and their Application to the Recovery of Ni and Co from Spent Automotive Lithium-Ion Batteries

Author(s):  
Takafumi Hanada ◽  
Kosuke Seo ◽  
Wataru Yoshida ◽  
Adroit T N Fajar ◽  
Masahiro Goto
Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3164
Author(s):  
Yujin So ◽  
Hyeon-Su Bae ◽  
Yi Young Kang ◽  
Ji Yun Chung ◽  
No Kyun Park ◽  
...  

Silicon is an attractive anode material for lithium-ion batteries (LIBs) because of its natural abundance and excellent theoretical energy density. However, Si-based electrodes are difficult to commercialize because of their significant volume changes during lithiation that can result in mechanical damage. To overcome this limitation, we synthesized an eco-friendly water-soluble polyimide (W-PI) precursor, poly(amic acid) salt (W-PAmAS), as a binder for Si anodes via a simple one-step process using water as a solvent. Using the W-PAmAS binder, a composite Si electrode was achieved by low-temperature processing at 150 °C. The adhesion between the electrode components was further enhanced by introducing 3,5-diaminobenzoic acid, which contains free carboxylic acid (–COOH) groups in the W-PAmAS backbone. The –COOH of the W-PI binder chemically interacts with the surface of Si nanoparticles (SiNPs) by forming ester bonds, which efficiently bond the SiNPs, even during severe volume changes. The Si anode with W-PI binder showed improved electrochemical performance with a high capacity of 2061 mAh g−1 and excellent cyclability of 1883 mAh g−1 after 200 cycles at 1200 mA g−1. Therefore, W-PI can be used as a highly effective polymeric binder in Si-based high-capacity LIBs.


Author(s):  
Shaohua Lu ◽  
Weidong Hu ◽  
Xiaojun Hu

Due to their low cost and improved safety compared to lithium-ion batteries, sodium-ion batteries have attracted worldwide attention in recent decades.


Author(s):  
А.Б. Абдрахманова ◽  
◽  
В. А. Кривченко ◽  
Н. М. Омарова

2017 ◽  
Vol 137 (8) ◽  
pp. 481-486
Author(s):  
Junichi Hayasaka ◽  
Kiwamu Shirakawa ◽  
Nobukiyo Kobayashi ◽  
Kenichi Arai ◽  
Nobuaki Otake ◽  
...  

2015 ◽  
Vol 30 (4) ◽  
pp. 351 ◽  
Author(s):  
HUANG Yan-Hua ◽  
HAN Xiang ◽  
CHEN Hui-Xin ◽  
CHEN Song-Yan ◽  
YANG Yong

Author(s):  
Bhanu Sood ◽  
Lucas Severn ◽  
Michael Osterman ◽  
Michael Pecht ◽  
Anton Bougaev ◽  
...  

Abstract A review of the prevalent degradation mechanisms in Lithium ion batteries is presented. Degradation and eventual failure in lithium-ion batteries can occur for a variety of dfferent reasons. Degradation in storage occurs primarily due to the self-discharge mechanisms, and is accelerated during storage at elevated temperatures. The degradation and failure during use conditions is generally accelerated due to the transient power requirements, the high frequency of charge/discharge cycles and differences between the state-of-charge and the depth of discharge influence the degradation and failure process. A step-by-step methodology for conducting a failure analysis of Lithion batteries is presented. The failure analysis methodology is illustrated using a decision-tree approach, which enables the user to evaluate and select the most appropriate techniques based on the observed battery characteristics. The techniques start with non-destructive and non-intrusive steps and shift to those that are more destructive and analytical in nature as information about the battery state is gained through a set of measurements and experimental techniques.


Sign in / Sign up

Export Citation Format

Share Document