low temperature processing
Recently Published Documents


TOTAL DOCUMENTS

369
(FIVE YEARS 81)

H-INDEX

35
(FIVE YEARS 5)

2022 ◽  
Author(s):  
Wim Deferme ◽  
Manoj Jose ◽  
Annelies Bronckaers ◽  
Rachith S N ◽  
Dieter Reenaers ◽  
...  

Abstract Temperature and strain are two vital parameters that play a significant role in wound diagnosis and healing. As periodic temperature measurements with a custom thermometer or strain measurements with conventional metallic gauges became less feasible for the modern competent health monitoring, individual temperature and strain measurement modalities incorporated into wearables and patches were developed. The proposed research in the article shows the development of a single sensor solution which can simultaneously measure both the above mentioned parameters. This work integrates a thermoelectric principle based temperature measurement approach into wearables, ensuring flexibility and bendability properties without affecting its thermo-generated voltage. The modified thermoelectric material helped to achieve stretchability of the sensor, thanks to its superior mechano-transduction properties. Moreover, the stretch-induced resistance changes become an additional marker for strain measurements so that both the parameters can be measured with the same sensor. Due to the independent measurement parameters (open circuit voltage and sensor resistance ), the sensing model is greatly attractive for measurements without cross-sensitivity. The highly resilient temperature and strain sensor show excellent linearity, repeatability and good sensitivity. Besides, due to the compatibility of the fabrication scheme to low temperature processing of the flexible materials and to mass volume production, printed fabrication methodologies were adopted to realize the sensor. This promises low cost production and a disposable nature (single use) of the sensor patch. The temperature-strain dual parameter semi-transparent sensor has been further tested on mice wounds in vivo. The preliminary experiments on mice wounds offer prospects for developing smart, i.e. sensorized, wound dressings for clinical applications.


Author(s):  
Atsushi Kogo ◽  
Kohei Yamamoto ◽  
Takurou N MURAKAMI

Abstract Although the all-inorganic perovskite CsPbI3 exhibits superior thermal- and photo-stability compared with organic-inorganic perovskites, formation of the photoactive α-phase requires sintering at approximately 320 oC. Herein, we report the partial substitution of Ge2+ ions for Pb2+ as a means of tuning the stability of the material and enabling α-phase formation at 90 oC.


Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3164
Author(s):  
Yujin So ◽  
Hyeon-Su Bae ◽  
Yi Young Kang ◽  
Ji Yun Chung ◽  
No Kyun Park ◽  
...  

Silicon is an attractive anode material for lithium-ion batteries (LIBs) because of its natural abundance and excellent theoretical energy density. However, Si-based electrodes are difficult to commercialize because of their significant volume changes during lithiation that can result in mechanical damage. To overcome this limitation, we synthesized an eco-friendly water-soluble polyimide (W-PI) precursor, poly(amic acid) salt (W-PAmAS), as a binder for Si anodes via a simple one-step process using water as a solvent. Using the W-PAmAS binder, a composite Si electrode was achieved by low-temperature processing at 150 °C. The adhesion between the electrode components was further enhanced by introducing 3,5-diaminobenzoic acid, which contains free carboxylic acid (–COOH) groups in the W-PAmAS backbone. The –COOH of the W-PI binder chemically interacts with the surface of Si nanoparticles (SiNPs) by forming ester bonds, which efficiently bond the SiNPs, even during severe volume changes. The Si anode with W-PI binder showed improved electrochemical performance with a high capacity of 2061 mAh g−1 and excellent cyclability of 1883 mAh g−1 after 200 cycles at 1200 mA g−1. Therefore, W-PI can be used as a highly effective polymeric binder in Si-based high-capacity LIBs.


Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3119
Author(s):  
Yijie Xia ◽  
Guowang Yan ◽  
Jian Lin

Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) has high optical transparency in the visible light range and low-temperature processing condition, making it one of the most widely used polymer hole transport materials inverted perovskite solar cells (PSCs), because of its high optical transparency in the visible light range and low-temperature processing condition. However, the stability of PSCs based on pristine PEDOT:PSS is far from satisfactory, which is ascribed to the acidic and hygroscopic nature of PEDOT:PSS, and property differences between PEDOT:PSS and perovskite materials, such as conductivity, work function and surface morphology. This review summaries recent efficient strategies to improve the stability of PEDOT:PSS in PSCs and discusses the underlying mechanisms. This review is expected to provide helpful insights for further increasing the stability of PSCs based on commercial PEDOT:PSS.


2021 ◽  
Vol 5 (11 (113)) ◽  
pp. 6-12
Author(s):  
Andrii Zahorulko ◽  
Oleksander Cherevko ◽  
Aleksey Zagorulko ◽  
Marіna Yancheva ◽  
Nina Budnyk ◽  
...  

Culinary meat products, in particular, delicacies, account for a significant share of the diet in many countries of the world, predetermining the need to introduce innovative solutions for the production of products of a wide range of use with original taste properties. A structure of the device for low-temperature processing of meat delicacies involving the heating of the working surface with a flexible film resistive electric heater of radiative type has been developed. Temperature control is carried out with a needle thermocouple. That makes it possible to cool the delicacy to 25...30 °C by autonomous fans during the conversion of secondary thermal energy by Peltier elements. It was established that the low voltage at the temperature of 70...80 °C is 4...6 W, and, at 25...30 °C, it is, respectively, 1.5...3 W. A comparative analysis has been performed of the heat treatment of meat delicacy in the traditional way and in the developed apparatus upon reaching 71...75 °C inside the product. The temperature for a traditional machine, after 5 minutes of processing, is 15...17 °C at the contact surface and 8 °C at the center. For the model structure, the temperature of the contact surface is 7...8 °C, and 4...5 °C in the center. After 25 minutes of processing in the traditional way, the temperature in the center was 17...18 °C, in the near-wall layers ‒ 60 °C. In the model structure, 8...9 °C, at a temperature of the near-wall layers of 25 °C. The temperature difference from the center to the near-wall layer, depending on the processing time in the traditional way, ranges from 10 to 50 °C, and, in the model apparatus, from 4 to 24 °C. The model device provides a uniform heat supply under conditions of achievement of 71…75 °C in the center of a product with a reduction of specific cost by 2.6 times in comparison with a traditional technique. The ham prepared in the developed apparatus is characterized by uniform coloration, juiciness, and natural original taste


Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6399
Author(s):  
Andrea Mizelli-Ojdanic ◽  
Jelena Horky ◽  
Bernhard Mingler ◽  
Mattia Fanetti ◽  
Sandra Gardonio ◽  
...  

In this study, several biodegradable Mg alloys (Mg5Zn, Mg5Zn0.3Ca, Mg5Zn0.15Ca, and Mg5Zn0.15Ca0.15Zr, numbers in wt%) were investigated after thermomechanical processing via high-pressure torsion (HPT) at elevated temperature as well as after additional heat treatments. Indirect and direct analyses of microstructure revealed that the significant strength increases arise not only from dislocations and precipitates but also from vacancy agglomerates. By contrast with former low-temperature processing routes applied by the authors, a significant ductility was obtained because of temperature-induced dynamic recovery. The low initial values of Young’s modulus were not significantly affected by warm HPT-processing. nor by heat treatments afterwards. Also, corrosion resistance did not change or even increase during those treatments. Altogether, the study reveals a viable processing route for the optimization of Mg alloys to provide enhanced mechanical properties while leaving the corrosion properties unaffected, suggesting it for the use as biodegradable implant material.


Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6228
Author(s):  
Juliana S. S. Oliveira ◽  
Ronald R. Hacha ◽  
Felipe S. d’Almeida ◽  
Caroline A. Almeida ◽  
Francisco J. Moura ◽  
...  

The production of electronic waste due to technological development, economic growth and increasing population has been rising fast, pushing for solutions before the environmental pressure achieves unprecedented levels. Recently, it was observed that many extractive metallurgy alternatives had been considered to recover value from this type of waste. Regarding pyrometallurgy, little is known about the low-temperature processing applied before fragmentation and subsequent component separation. Therefore, the present manuscript studies such alternative based on scanning electron microscopy characterization. The sample used in the study was supplied by a local recycling center in Rio de Janeiro, Brazil. The mass loss was constant at around 30% for temperatures higher than 300 °C. Based on this fact, the waste material was then submitted to low-temperature processing at 350 °C followed by attrition disassembling, size classification, and magnetic concentration steps. In the end, this first report of the project shows that 15% of the sample was recovered with metallic components with high economic value, such as Cu, Ni, and Au, indicating that such methods could be an interesting alternative to be explored in the future for the development of alternative electronic waste extraction routes.


Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5831
Author(s):  
Fan Li ◽  
Fabrizio Roccaforte ◽  
Giuseppe Greco ◽  
Patrick Fiorenza ◽  
Francesco La Via ◽  
...  

Wide bandgap (WBG) semiconductors are becoming more widely accepted for use in power electronics due to their superior electrical energy efficiencies and improved power densities. Although WBG cubic silicon carbide (3C-SiC) displays a modest bandgap compared to its commercial counterparts (4H-silicon carbide and gallium nitride), this material has excellent attributes as the WBG semiconductor of choice for low-resistance, reliable diode and MOS devices. At present the material remains firmly in the research domain due to numerous technological impediments that hamper its widespread adoption. The most obvious obstacle is defect-free 3C-SiC; presently, 3C-SiC bulk and heteroepitaxial (on-silicon) display high defect densities such as stacking faults and antiphase boundaries. Moreover, heteroepitaxy 3C-SiC-on-silicon means low temperature processing budgets are imposed upon the system (max. temperature limited to ~1400 °C) limiting selective doping realisation. This paper will give a brief overview of some of the scientific aspects associated with 3C-SiC processing technology in addition to focussing on the latest state of the art results. A particular focus will be placed upon key process steps such as Schottky and ohmic contacts, ion implantation and MOS processing including reliability. Finally, the paper will discuss some device prototypes (diodes and MOSFET) and draw conclusions around the prospects for 3C-SiC devices based upon the processing technology presented.


Sign in / Sign up

Export Citation Format

Share Document