Tailoring of polysulfate/polyvinylpyrrolidone membrane structure via NIPS coupled physical aging technique for high-performance dye/salt separation

Author(s):  
Jing-Yuan Zhou ◽  
Ming-Jie Yin ◽  
Zhi-Peng Wang ◽  
Yue Shen ◽  
Naixin Wang ◽  
...  
Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1811
Author(s):  
Valeriia Rostovtseva ◽  
Alexandra Pulyalina ◽  
Roman Dubovenko ◽  
Ilya Faykov ◽  
Kseniya Subbotina ◽  
...  

Modification of polymer matrix by hybrid fillers is a promising way to produce membranes with excellent separation efficiency due to variations in membrane structure. High-performance membranes for the pervaporation dehydration were produced by modifying poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) to facilitate lactic acid purification. Ionic liquid (IL), heteroarm star macromolecules (HSM), and their combination (IL:HSM) were employed as additives to the polymer matrix. The composition and structure of hybrid membranes were characterized by X-ray diffraction and FTIR spectroscopy. Scanning electron microscopy was used to investigate the membranes surface and cross-section morphology. It was established that the inclusion of modifiers in the polymer matrix leads to the change of membrane structure. The influence of IL:HSM was also studied via sorption experiments and pervaporation of water‒lactic acid mixtures. Lactic acid is an essential compound in many industries, including food, pharmaceutical, chemical, while the recovering and purifying account for approximately 50% of its production cost. It was found that the membranes selectively remove water from the feed. Quantum mechanical calculations determine the favorable interactions between various membrane components and the liquid mixture. With IL:HSM addition, the separation factor and performance in lactic acid dehydration were improved compared with pure polymer membrane. The best performance was found for (HSM: IL)-PPO/UPM composite membrane, where the permeate flux and the separation factor of about 0.06 kg m−2 h−1 and 749, respectively, were obtained. The research results demonstrated that ionic liquids in combination with star macromolecules for membrane modification could be a promising approach for membrane design.


2021 ◽  
Vol 67 (5) ◽  
pp. 54-63
Author(s):  
L.M. Gunina ◽  
◽  
I.L. Rybina ◽  
Yu.A. Ataman ◽  
V.L. Voitenko ◽  
...  

Blood oxygen transport regulation by physical activity increase within training dynamics is provided with different mechanisms: from the quantitative and qualitative erythron restructure (including endogenous erythropoietin rise and main erythrocyte index shifts) to change in haemoglobin affinity to oxygen, its heterogeneous structure and blood flow growth as a result of endothelium hyperpolarisation. However, the erythrocyte itself remains a key performer in blood velocity control, due to its structure and functions. This review summarizes the data of modern scientific literature on the characteristics of erythrocytes, which make these cells one of the key links in the oxygen transport system of the blood. The focus on this property of erythrocytes during physical activity is based on the fact that the athlete’s muscles must be supplied with enough oxygen to ensure high performance. Specific training and extra-training factors affecting the content of erythrocytes have been determined. The membrane structure is treated as a significant erythrocyte part in determining its deformation and microvascular blood transport. Enzymes associated with the erythrocyte membrane and affecting cell viability and performance are described. Besides, it is stressed on monitoring erythrocyte indices via modern equipment and assessing lipid peroxidation, which leads to disorders in erythrocyte membrane structure and functions.


1995 ◽  
Vol 54 (4) ◽  
pp. 405-415 ◽  
Author(s):  
J.Z. Wang ◽  
H. Parvatareddy ◽  
T. Chang ◽  
N. Iyengar ◽  
D.A. Dillard ◽  
...  

1995 ◽  
Vol 57 (8) ◽  
pp. 989-995 ◽  
Author(s):  
Yingwei Di ◽  
Alberto D'Amore ◽  
Giuliano Marino ◽  
Luigi Nicolais ◽  
Binyao Li

Sensors ◽  
2017 ◽  
Vol 17 (3) ◽  
pp. 593 ◽  
Author(s):  
Chenzhao Fu ◽  
Wenrong Si ◽  
Haoyong Li ◽  
Delin Li ◽  
Peng Yuan ◽  
...  

Author(s):  
A. V. Crewe ◽  
M. Isaacson ◽  
D. Johnson

A double focusing magnetic spectrometer has been constructed for use with a field emission electron gun scanning microscope in order to study the electron energy loss mechanism in thin specimens. It is of the uniform field sector type with curved pole pieces. The shape of the pole pieces is determined by requiring that all particles be focused to a point at the image slit (point 1). The resultant shape gives perfect focusing in the median plane (Fig. 1) and first order focusing in the vertical plane (Fig. 2).


Author(s):  
N. Yoshimura ◽  
K. Shirota ◽  
T. Etoh

One of the most important requirements for a high-performance EM, especially an analytical EM using a fine beam probe, is to prevent specimen contamination by providing a clean high vacuum in the vicinity of the specimen. However, in almost all commercial EMs, the pressure in the vicinity of the specimen under observation is usually more than ten times higher than the pressure measured at the punping line. The EM column inevitably requires the use of greased Viton O-rings for fine movement, and specimens and films need to be exchanged frequently and several attachments may also be exchanged. For these reasons, a high speed pumping system, as well as a clean vacuum system, is now required. A newly developed electron microscope, the JEM-100CX features clean high vacuum in the vicinity of the specimen, realized by the use of a CASCADE type diffusion pump system which has been essentially improved over its predeces- sorD employed on the JEM-100C.


Author(s):  
Robert M. Glaeser ◽  
David W. Deamer

In the investigation of the molecular organization of cell membranes it is often supposed that lipid molecules are arranged in a bimolecular film. X-ray diffraction data obtained in a direction perpendicular to the plane of suitably layered membrane systems have generally been interpreted in accord with such a model of the membrane structure. The present studies were begun in order to determine whether selected area electron diffraction would provide a tool of sufficient sensitivity to permit investigation of the degree of intermolecular order within lipid films. The ultimate objective would then be to apply the method to single fragments of cell membrane material in order to obtain data complementary to the transverse data obtainable by x-ray diffraction.


Sign in / Sign up

Export Citation Format

Share Document