Thermoeconomic analysis of a biomass and solar energy based organic Rankine cycle system under part load behavior

2021 ◽  
Vol 46 ◽  
pp. 101207
Author(s):  
Ozum Calli ◽  
C. Ozgur Colpan ◽  
Huseyin Gunerhan
Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3870
Author(s):  
Bernd Eppinger ◽  
Mustafa Muradi ◽  
Daniel Scharrer ◽  
Lars Zigan ◽  
Peter Bazan ◽  
...  

Pumped Thermal Energy Storages (PTES) are suitable for bridging temporary energy shortages, which may occur due to the utilization of renewable energy sources. A combined heat pump (HP)-Organic Rankine Cycle (ORC) system with suitable thermal storage offers a favorable way to store energy for small to medium sized applications. To address the aspect of flexibility, the part load behavior of a combined HP-ORC system, both having R1233zd(E) (Trans-1-chloro-3,3,3-trifluoropropene) as working fluid and being connected through a water filled sensible thermal energy storage, is investigated using a MATLAB code with integration of the fluid database REFPROP. The influence on the isentropic efficiency of the working machines and therefore the power to power efficiency (P2P) of the complete system is shown by variation of the mass flow and a temperature drop in the thermal storage. Further machine-specific parameters such as volumetric efficiency and internal leakage efficiency are also considered. The results show the performance characteristics of the PTES as a function of the load. While the drop in storage temperature has only slight effects on the P2P efficiency, the reduction in mass flow contributes to the biggest decrease in the efficiency. Furthermore, a simulation for dynamic load analysis of a small energy grid in a settlement is conducted to show the course of energy demand, supplied energy by photovoltaic (PV) systems, as well as the PTES performance indicators throughout an entire year. It is shown that the use of PTES is particularly useful in the period between winter and summer time, when demand and supplied photovoltaic energy are approximately equal.


Author(s):  
Awaludin Martin ◽  
Muhammad Nur

New and renewable energy sources such as solar, geothermal, and waste heat  are energy sources that can be used as a source of energy for Organic Rankine cycle system because the organic Rankine cycle (ORC) requires heat at low temperatures to be used as energy source. The experimental of Organic Rankine Cycle (ORC) systems with solar energy as a heat source was conduct to investigate a small-scale ORC system with R134a as a working fluid by varying the heat source at temperature 75⁰C-95⁰C. The experiment resulted a maximum efficiency, power of system is 4.30%, and 185.9 Watt, where the temperature of heat source is 95⁰C, the pressure and temperature of steam inlet turbine is 1.38 MPa and 67.9oC respectively. Solar energy as the main energy source in the ORC system can reduce energy use up to 49.9% or 4080.8 kJ where the temperature of the water as the heat source in the evaporator is 51°C.


2017 ◽  
Author(s):  
Weicong Xu ◽  
Li Zhao ◽  
Shuai Deng ◽  
Jianyuan Zhang ◽  
Wen Su

Sign in / Sign up

Export Citation Format

Share Document