scholarly journals Simulation of the Part Load Behavior of Combined Heat Pump-Organic Rankine Cycle Systems

Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3870
Author(s):  
Bernd Eppinger ◽  
Mustafa Muradi ◽  
Daniel Scharrer ◽  
Lars Zigan ◽  
Peter Bazan ◽  
...  

Pumped Thermal Energy Storages (PTES) are suitable for bridging temporary energy shortages, which may occur due to the utilization of renewable energy sources. A combined heat pump (HP)-Organic Rankine Cycle (ORC) system with suitable thermal storage offers a favorable way to store energy for small to medium sized applications. To address the aspect of flexibility, the part load behavior of a combined HP-ORC system, both having R1233zd(E) (Trans-1-chloro-3,3,3-trifluoropropene) as working fluid and being connected through a water filled sensible thermal energy storage, is investigated using a MATLAB code with integration of the fluid database REFPROP. The influence on the isentropic efficiency of the working machines and therefore the power to power efficiency (P2P) of the complete system is shown by variation of the mass flow and a temperature drop in the thermal storage. Further machine-specific parameters such as volumetric efficiency and internal leakage efficiency are also considered. The results show the performance characteristics of the PTES as a function of the load. While the drop in storage temperature has only slight effects on the P2P efficiency, the reduction in mass flow contributes to the biggest decrease in the efficiency. Furthermore, a simulation for dynamic load analysis of a small energy grid in a settlement is conducted to show the course of energy demand, supplied energy by photovoltaic (PV) systems, as well as the PTES performance indicators throughout an entire year. It is shown that the use of PTES is particularly useful in the period between winter and summer time, when demand and supplied photovoltaic energy are approximately equal.

Author(s):  
Musbaudeen O. Bamgbopa ◽  
Eray Uzgoren

This paper presents a solar Organic Rankine Cycle (ORC) for electricity generation; where a regression based approach is used for the working fluid. Models of the unit’s sub-components (pump, evaporator, expander and condenser) are also presented. Heat supplied by the solar field can heat the water up to 80–95 °C at mass flow rates of 2–12 kg/s and deliver energy to the ORC’s heat exchanger unit. Simulation results of steady state operation using the developed model shows a maximum power output of around 40 kWe. Both refrigerant and hot water mass flow rates in the system are identified as critical parameters to optimize the power production and the cycle efficiency.


Author(s):  
Piero Colonna ◽  
Emiliano Casati ◽  
Carsten Trapp ◽  
Tiemo Mathijssen ◽  
Jaakko Larjola ◽  
...  

The cumulative global capacity of organic Rankine cycle (ORC) power systems for the conversion of renewable and waste thermal energy is undergoing a rapid growth and is estimated to be approx. 2000 MWe considering only installations that went into operation after 1995. The potential for the conversion of the thermal power coming from liquid-dominated geothermal reservoirs, waste heat from primary engines or industrial processes, biomass combustion, and concentrated solar radiation into electricity is arguably enormous. ORC technology is possibly the most flexible in terms of capacity and temperature level and is currently often the only applicable technology for the conversion of external thermal energy sources. In addition, ORC power systems are suitable for the cogeneration of heating and/or cooling, another advantage in the framework of distributed power generation. Related research and development is therefore very lively. These considerations motivated the effort documented in this article, aimed at providing consistent information about the evolution, state, and future of this power conversion technology. First, basic theoretical elements on the thermodynamic cycle, working fluid, and design aspects are illustrated, together with an evaluation of the advantages and disadvantages in comparison to competing technologies. An overview of the long history of the development of ORC power systems follows, in order to place the more recent evolution into perspective. Then, a compendium of the many aspects of the state of the art is illustrated: the solutions currently adopted in commercial plants and the main-stream applications, including information about exemplary installations. A classification and terminology for ORC power plants are proposed. An outlook on the many research and development activities is provided, whereby information on new high-impact applications, such as automotive heat recovery is included. Possible directions of future developments are highlighted, ranging from efforts targeting volume-produced stationary and mobile mini-ORC systems with a power output of few kWe, up to large MWe base-load ORC plants.


2021 ◽  
Author(s):  
Bipul Krishna Saha ◽  
Basab Chakraborty ◽  
Rohan Dutta

Abstract Industrial low-grade waste heat is lost, wasted and deposited in the atmosphere and is not put to any practical use. Different technologies are available to enable waste heat recovery, which can enhance system energy efficiency and reduce total energy consumption. Power plants are energy-intensive plants with low-grade waste heat. In the case of such plants, recovery of low-grade waste heat is gaining considerable interest. However, in such plants, power generation often varies based on market demand. Such variations may adversely influence any recovery system's performance and the economy, including the Organic Rankine Cycle (ORC). ORC technologies coupled with Cryogenic Energy Storage (CES) may be used for power generation by utilizing the waste heat from such power plants. The heat of compression in a CES may be stored in thermal energy storage systems and utilized in ORC or Regenerative ORC (RORC) for power generation during the system's discharge cycle. This may compensate for the variation of the waste heat from the power plant, and thereby, the ORC system may always work under-designed capacity. This paper presents the thermo-economic analysis of such an ORC system. In the analysis, a steady-state simulation of the ORC system has been developed in a commercial process simulator after validating the results with experimental data for a typical coke-oven plant. Forty-nine different working fluids were evaluated for power generation parameters, first law efficiencies, purchase equipment cost, and fixed investment payback period to identify the best working fluid.


Author(s):  
Sol-Carolina Costa ◽  
Khamid Mahkamov ◽  
Murat Kenisarin ◽  
Kevin Lynn ◽  
Elvedin Halimic ◽  
...  

The design of the Latent Heat Thermal Storage System (LHTESS) was developed with thermal capacity of about 100 kWh as a part of small solar plant, based on the Organic Rankine Cycle (ORC). The phase change material (PCM) used is Solar salt with the melting/solidification temperature of about 220°C. Thermo-physical properties of the PCM were measured, including its phase transition temperature, heat of fusion, specific heat and thermal conductivity. The design of the thermal storage was finalized by means of the 3-D CFD analysis. The thermal storage system is made of six rectangular boxes with dimensions of 1 m (width) × 0.66 m (height) × 0.47 m (depth). The thermal energy is delivered to each of the thermal storage boxes with the use of thermal oil, heated by Fresnel mirrors. The heat is transferred into and from the PCM in the box using 40 bi-directional heat pipes with the external diameter of about 12 mm. The length of the heat pipe in the PCM box is 430 mm and it is placed in the cylindrical metallic protection cartridge, installed in the thermal storage vessel. The working fluid in the heat pipe is water. A set of metallic screens are installed in the box with the pitch of 8–10 mm to enhance the heat transfer from heat pipes to the PCM and vice-versa during the charging and discharging processes, which take about 4 hours. The one unit of the described thermal storage system is undergoing the laboratory tests. Preliminary results demonstrate that the performance of the thermal storage is in a good agreement with numerical predictions. After completion of final design modifications, all units will be assembled at the plant’s demonstration site and tested with the ORC turbine.


Energies ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5904
Author(s):  
Jahan Zeb Alvi ◽  
Yongqiang Feng ◽  
Qian Wang ◽  
Muhammad Imran ◽  
Lehar Asip Khan ◽  
...  

Solar energy is a potential source for a thermal power generation system. A direct vapor generation solar organic Rankine cycle system using phase change material storage was analyzed in the present study. The overall system consisted of an arrangement of evacuated flat plate collectors, a phase-change-material-based thermal storage tank, a turbine, a water-cooled condenser, and an organic fluid pump. The MATLAB programming environment was used to develop the thermodynamic model of the whole system. The thermal storage tank was modeled using the finite difference method and the results were validated against experimental work carried out in the past. The hourly weather data of Karachi, Pakistan, was used to carry out the dynamic simulation of the system on a weekly, monthly, and annual basis. The impact of phase change material storage on the enhancement of the overall system performance during the charging and discharging modes was also evaluated. The annual organic Rankine cycle efficiency, system efficiency, and net power output were observed to be 12.16%, 9.38%, and 26.8 kW, respectively. The spring and autumn seasons showed better performance of the phase change material storage system compared to the summer and winter seasons. The rise in working fluid temperature, the fall in phase change material temperature, and the amount of heat stored by the thermal storage were found to be at a maximum in September, while their values became a minimum in February.


Author(s):  
Sylvain Quoilin ◽  
Olivier Dumont ◽  
Kristian Harley Hansen ◽  
Vincent Lemort

In this paper, an innovative system combining a heat pump (HP) and an organic Rankine cycle (ORC) process is proposed. This system is integrated with a solar roof, which is used as a thermal source to provide heat in winter months (HP mode) and electricity in summer months (ORC mode) when an excess irradiation is available on the solar roof. The main advantage of the proposed unit is its similarity with a traditional HP: the HP/ORC unit only requires the addition of a pump and four-way valves compared to a simple HP, which can be achieved at a low cost. A methodology for the optimal sizing and design of the system is proposed, based on the optimization of both continuous parameters such as heat exchanger size or discrete variables such as working fluid. The methodology is based on yearly simulations, aimed at optimizing the system performance (the net yearly power generation) over its whole operating range instead of just nominal sizing operating conditions. The simulations allow evaluating the amount of thermal energy and electricity generated throughout the year, yielding a net electric power output of 3496 kWh throughout the year.


Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5611
Author(s):  
Youcef Redjeb ◽  
Khatima Kaabeche-Djerafi ◽  
Anna Stoppato ◽  
Alberto Benato

The Algerian economy and electricity generation sector are strongly dependent on fossil fuels. Over 93% of Algerian exports are hydrocarbons, and approximately 90% of the generated electricity comes from natural gas power plants. However, Algeria is also a country with huge potential in terms of both renewable energy sources and industrial processes waste heat recovery. For these reasons, the government launched an ambitious program to foster renewable energy sources and industrial energy efficiency. In this context, steam and organic Rankine cycles could play a crucial role; however, there is a need for reliable and time-efficient optimization tools that take into account technical, economic, environmental, and safety aspects. For this purpose, the authors built a mathematical tool able to optimize both steam and organic Rankine units. The tool, called Improved Rankine Cycle Plant Designer, was developed in MATLAB environment, uses the Genetic Algorithm toolbox, acquires the fluids thermophysical properties from CoolProp and REFPROP databases, while the safety information is derived from the ASHRAE database. The tool, designed to support the development of both RES and industrial processes waste heat recovery, could perform single or multi-objective optimizations of the steam Rankine cycle layout and of a multiple set of organic Rankine cycle configurations, including the ones which adopt a water or an oil thermal loop. In the case of the ORC unit, the working fluid is selected among more than 120 pure fluids and their mixtures. The turbines’ design parameters and the adoption of a water- or an air-cooled condenser are also optimization results. To facilitate the plant layout and working fluid selection, the economic analysis is performed to better evaluate the plant economic feasibility after the thermodynamic optimization of the cycle. Considering the willingness of moving from a fossil to a RES-based economy, there is a need for adopting plants using low environmental impact working fluids. However, because ORC fluids are subjected to environmental and safety issues, as well as phase out, the code also computes the Total Equivalent Warming Impact, provides safety information using the ASHRAE database, and displays an alert if the organic substance is phased out or is going to be banned. To show the tool’s potentialities and improve the knowledge on waste heat recovery in bio-gas plants, the authors selected an in-operation facility in which the waste heat is released by a 1 MWel internal combustion engine as the test case. The optimization outcomes reveal that the technical, economic, environmental, and safety performance can be achieved adopting the organic Rankine cycle recuperative configuration. The unit, which adopts Benzene as working fluid, needs to be decoupled from the heat source by means of an oil thermal loop. This optimized solution guarantees to boost the electricity production of the bio-gas facility up to 15%.


Sign in / Sign up

Export Citation Format

Share Document