Numerical simulation for aerodynamic derivatives of bridge deck

2009 ◽  
Vol 17 (4) ◽  
pp. 719-729 ◽  
Author(s):  
Lin Huang ◽  
Haili Liao ◽  
Bin Wang ◽  
Yongle Li
1990 ◽  
Vol 112 (1) ◽  
pp. 83-87 ◽  
Author(s):  
R. H. Fries ◽  
B. M. Coffey

Solution of rail vehicle dynamics models by means of numerical simulation has become more prevalent and more sophisticated in recent years. At the same time, analysts and designers are increasingly interested in the response of vehicles to random rail irregularities. The work described in this paper provides a convenient method to generate random vertical and crosslevel irregularities when their time histories are required as inputs to a numerical simulation. The solution begins with mathematical models of vertical and crosslevel power spectral densities (PSDs) representing PSDs of track classes 4, 5, and 6. The method implements state-space models of shape filters whose frequency response magnitude squared matches the desired PSDs. The shape filters give time histories possessing the proper spectral content when driven by white noise inputs. The state equations are solved directly under the assumption that the white noise inputs are constant between time steps. Thus, the state transition matrix and the forcing matrix are obtained in closed form. Some simulations require not only vertical and crosslevel alignments, but also the first and occasionally the second derivatives of these signals. To accommodate these requirements, the first and second derivatives of the signals are also generated. The responses of the random vertical and crosslevel generators depend upon vehicle speed, sample interval, and track class. They possess the desired PSDs over wide ranges of speed and sample interval. The paper includes a comparison between synthetic and measured spectral characteristics of class 4 track. The agreement is very good.


2014 ◽  
Vol 1004-1005 ◽  
pp. 1474-1477
Author(s):  
Ze Ying Yang ◽  
Jia You Liu ◽  
Yi Dong Zhang ◽  
Jian Bo Qu

By numerical simulation and contrasting with experimental conclusions, mechanical models in every loading stage of CFRP reinforced concrete bridge deck were established. The results showed that, numerical simulation results of non-prestressed bridge decks fitted corresponding test results well. The stiffness of prestressed structures had been greatly improved than non-prestressed structures, so the high strength performance of CFRP had been used more effectively.


Aerospace ◽  
2020 ◽  
Vol 7 (8) ◽  
pp. 116
Author(s):  
Krzysztof Sibilski ◽  
Mirosław Nowakowski ◽  
Dariusz Rykaczewski ◽  
Paweł Szczepaniak ◽  
Andrzej Żyluk ◽  
...  

A micro air vehicle (MAV) is a class of miniature unmanned aerial vehicles that has a size restriction and may be autonomous. Fixed-wing MAVs are very attractive for outdoor surveillance missions since they generally offer better payload and endurance capabilities than rotorcraft or flapping-wing vehicles of equal size. This research paper describes the methodology applying indicial function theory and artificial neural networks for identification of aerodynamic derivatives for fixed-wing MAV. The formulation herein proposed extends well- known aerodynamic theories, which are limited to thin aerofoils in incompressible flow, to strake wing planforms. Using results from dynamic water tunnel tests and indicial functions approach allowed to identify MAV aerodynamic derivatives. The experiments were conducted in a water tunnel in the course of dynamic tests of periodic oscillatory motion. The tests program range was set at high angles of attack and a wide scope of reduced frequencies of angular movements. Due to a built-in propeller, the model’s structure test program was repeated for a turned-on propelled drive system. As a result of these studies, unsteady aerodynamics characteristics and aerodynamic derivatives of the micro-aircraft were identified as functions of state parameters. At the Warsaw University of Technology and the Air Force Institute of Technology, a “Bee” fixed wings micro aerial vehicle with an innovative strake-wing outline and a propeller placed in the wing gap was worked. This article is devoted to the problems of identification of aerodynamic derivatives of this micro-aircraft. The result of this research was the identification of the aerodynamic derivatives of the fixed wing MAV “Bee” as non-linear functions of the angle of attack, and reduced frequency. The identification was carried out using the indicial function approach.


Mathematics ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 1171
Author(s):  
Yihua Cao ◽  
Wenyuan Tan ◽  
Yuan Su ◽  
Zhongda Xu ◽  
Guo Zhong

To study the effects of ice accretion on the longitudinal aerodynamic characteristics of an aircraft, a two-part method for predicting longitudinal aerodynamic derivatives of iced aircraft is proposed. For the aircraft with a flight test, a parameter identification system based on maximum likelihood criterion and a longitudinal nonlinear flight dynamics model is established. For the aircraft without a flight test, an engineering prediction method of aerodynamic derivatives based on an individual component CFD calculation and narrow strip theory is established. According to the flight test data of DHC-6 Twin Otter aircraft from NASA, the longitudinal aerodynamic parameters of both clean and artificially iced aircraft are obtained. Additionally, the longitudinal aerodynamic derivatives of the iced aircraft are calculated. Then, the correctness of the prediction method is verified by comparing the calculated results with the identification results. The comparison of these results shows that the prediction method is correct and accurate, and it can be used to calculate the effects of icing on the aircraft longitudinal aerodynamic parameters.


1946 ◽  
Vol 50 (424) ◽  
pp. 275-286 ◽  
Author(s):  
E. J. N. Archbold ◽  
Kieran T. McKenzie

SummaryIf the motion of an aircraft is restricted, near the ground, to zero bank, comparatively simple solutions to the resulting equations of motion can be obtained, enabling the response to an applied yawing moment to be calculated rapidly. In this paper the analysis is made for three simple forms of applied yawing moment. From the results obtained in a particular case it is possible to judge the suitability of the fin and rudder design chosen on the basis of maximum sideslip reached. A general curve of overswing, in terms of the aerodynamic derivatives of the aircraft, enables the maximum sideslip to be calculated rapidly in a particular case.Because of typogiaphical difficulties the symbols ^ have been replaced by ° with v, r and t throughout the paper.


2018 ◽  
Vol 45 (11) ◽  
pp. 1004-1014
Author(s):  
Quanshun Ding ◽  
Shuanghu Dong ◽  
Zhiyong Zhou

An identification of eight aerodynamic derivatives based on dual-mode and single-mode extraction of system is presented to improve the applicability and accuracy of identification at high testing wind speed. The participation rate to measure the contribution of modes on free-vibration responses is defined and the single-mode extraction is presented to extract the modal parameters of the system at high wind speed. To verify the reliability and applicability of the presented method, the aerodynamic derivatives of a dummy section with known self-excited forces are identified. It is noted that there is a very good agreement between the identified results and the target ones in the range of the low and high wind speeds and the presented method works well after the critical state of flutter. The sectional wind tunnel test of the Tanggu-haihe bridge is performed to identify the aerodynamic derivatives of the deck at the attack angles of −3°, 0°, and 3°.


Sign in / Sign up

Export Citation Format

Share Document