scholarly journals Regulation of cell cycle and differentiation markers by pathogenic, non-pathogenic and opportunistic skin bacteria

Author(s):  
Sidra Younis ◽  
Farah Deeba ◽  
Rida Fatima Saeed ◽  
Ramzi A. Mothana ◽  
Riaz Ullah ◽  
...  
2019 ◽  
Vol 26 (11) ◽  
pp. 800-818
Author(s):  
Zujian Xiong ◽  
Xuejun Li ◽  
Qi Yang

Pituitary Tumor Transforming Gene (PTTG) of human is known as a checkpoint gene in the middle and late stages of mitosis, and is also a proto-oncogene that promotes cell cycle progression. In the nucleus, PTTG works as securin in controlling the mid-term segregation of sister chromatids. Overexpression of PTTG, entering the nucleus with the help of PBF in pituitary adenomas, participates in the regulation of cell cycle, interferes with DNA repair, induces genetic instability, transactivates FGF-2 and VEGF and promotes angiogenesis and tumor invasion. Simultaneously, overexpression of PTTG induces tumor cell senescence through the DNA damage pathway, making pituitary adenoma possessing the potential self-limiting ability. To elucidate the mechanism of PTTG in the regulation of pituitary adenomas, we focus on both the positive and negative function of PTTG and find out key factors interacted with PTTG in pituitary adenomas. Furthermore, we discuss other possible mechanisms correlate with PTTG in pituitary adenoma initiation and development and the potential value of PTTG in clinical treatment.


2021 ◽  
Vol 85 (3) ◽  
pp. 553-561
Author(s):  
Chenxia Ren ◽  
Cuiling Wu ◽  
Changqing Yang ◽  
Changhong Lian

ABSTRACT Vitamin C has re-emerged as a promising anticancer agent. This study attempts to analyze the differential gene expression of profiles GSE11919 to look for some clues, and the most significant cell cycle pathway caused by vitamin C was identified by integrated bioinformatics analysis. Inspired by this, we investigated the effect of vitamin C treatment on gastric carcinoma cells by detection of cell cycle, apoptosis, and autophagy. Vitamin C significantly elevated the percentage of cells at G0/G1 phase, whereas the percentage of S phase cells was decreased. Meanwhile, vitamin C treatment resulted in downregulation of cell cycle-related protein Cyclin D1. We deduced that the downregulation of Cyclin D1 by vitamin C accompanied by significantly increased 5′AMP-activated protein kinase and induced autophagy in MKN45 cells. These results suggest that vitamin C has the antiproliferation effect on gastric carcinoma cells via the regulation of cell cycle and autophagy by Cyclin D1.


Genetics ◽  
2003 ◽  
Vol 164 (1) ◽  
pp. 323-334
Author(s):  
S B Preuss ◽  
A B Britt

Abstract Although it is well established that plant seeds treated with high doses of gamma radiation arrest development as seedlings, the cause of this arrest is unknown. The uvh1 mutant of Arabidopsis is defective in a homolog of the human repair endonuclease XPF, and uvh1 mutants are sensitive to both the toxic effects of UV and the cytostatic effects of gamma radiation. Here we find that gamma irradiation of uvh1 plants specifically triggers a G2-phase cell cycle arrest. Mutants, termed suppressor of gamma (sog), that suppress this radiation-induced arrest and proceed through the cell cycle unimpeded were recovered in the uvh1 background; the resulting irradiated plants are genetically unstable. The sog mutations fall into two complementation groups. They are second-site suppressors of the uvh1 mutant's sensitivity to gamma radiation but do not affect the susceptibility of the plant to UV radiation. In addition to rendering the plants resistant to the growth inhibitory effects of gamma radiation, the sog1 mutation affects the proper development of the pollen tetrad, suggesting that SOG1 might also play a role in the regulation of cell cycle progression during meiosis.


2015 ◽  
Vol 1848 (10) ◽  
pp. 2629-2637 ◽  
Author(s):  
Paul G. Barghouth ◽  
Manish Thiruvalluvan ◽  
Néstor J. Oviedo

Sign in / Sign up

Export Citation Format

Share Document