scholarly journals Utilizing Spectral Vegetation Indices for Yield Assessment of Tomato Genotypes Grown in Arid Conditions

Author(s):  
Abdulhakim A. Aldubai ◽  
Abdullah A. Alsadon ◽  
Khalid A. Al-Gaadi ◽  
ElKamil Tola ◽  
Abdullah A. Ibrahim
2021 ◽  
Vol 13 (11) ◽  
pp. 2060
Author(s):  
Trylee Nyasha Matongera ◽  
Onisimo Mutanga ◽  
Mbulisi Sibanda ◽  
John Odindi

Land surface phenology (LSP) has been extensively explored from global archives of satellite observations to track and monitor the seasonality of rangeland ecosystems in response to climate change. Long term monitoring of LSP provides large potential for the evaluation of interactions and feedbacks between climate and vegetation. With a special focus on the rangeland ecosystems, the paper reviews the progress, challenges and emerging opportunities in LSP while identifying possible gaps that could be explored in future. Specifically, the paper traces the evolution of satellite sensors and interrogates their properties as well as the associated indices and algorithms in estimating and monitoring LSP in productive rangelands. Findings from the literature revealed that the spectral characteristics of the early satellite sensors such as Landsat, AVHRR and MODIS played a critical role in the development of spectral vegetation indices that have been widely used in LSP applications. The normalized difference vegetation index (NDVI) pioneered LSP investigations, and most other spectral vegetation indices were primarily developed to address the weaknesses and shortcomings of the NDVI. New indices continue to be developed based on recent sensors such as Sentinel-2 that are characterized by unique spectral signatures and fine spatial resolutions, and their successful usage is catalyzed with the development of cutting-edge algorithms for modeling the LSP profiles. In this regard, the paper has documented several LSP algorithms that are designed to provide data smoothing, gap filling and LSP metrics retrieval methods in a single environment. In the future, the development of machine learning algorithms that can effectively model and characterize the phenological cycles of vegetation would help to unlock the value of LSP information in the rangeland monitoring and management process. Precisely, deep learning presents an opportunity to further develop robust software packages such as the decomposition and analysis of time series (DATimeS) with the abundance of data processing tools and techniques that can be used to better characterize the phenological cycles of vegetation in rangeland ecosystems.


2021 ◽  
Author(s):  
Antonello Bonfante ◽  
Arturo Erbaggio ◽  
Eugenia Monaco ◽  
Rossella Albrizio ◽  
Pasquale Giorio ◽  
...  

<p>Currently, the main goal of agriculture is to promote the resilience of agricultural systems in a sustainable way through the improvement of use efficiency of farm resources, increasing crop yield and quality, under climate change conditions. Climate change is one of the major challenges for high incomes crops, as the vineyards for high-quality wines, since it is expected to drastically modify plant growth, with possible negative effects especially in arid and semi-arid regions of Europe. In this context, the reduction of negative environmental impacts of intensive agriculture (e.g. soil degradation), can be realized by means of high spatial and temporal resolution of field crop monitoring, aiming to manage the local spatial variability.</p><p>The monitoring of spatial behaviour of plants during the growing season represents an opportunity to improve the plant management, the farmer incomes and to preserve the environmental health, but it represents an additional cost for the farmer.</p><p>The UAS-based imagery might provide detailed and accurate information across visible and near infrared spectral regions to support monitoring (crucial for precision agriculture) with limitation in bands and then on spectral vegetation indices (Vis) provided. VIs are a well-known and widely used method for crop state estimation. The ability to monitor crop state by such indices is an important tool for agricultural management. While differences in imagery and point-based spectroscopy are obvious, their impact on crop state estimation by VIs is not well-studied. The aim of this study was to assess the performance level of the selected VIs calculated from reconstructed high-resolution satellite (Sentinel-2A) multispectral imagery (13 bands across 400-2500nm with spatial resolution of <2m) through Convolutional Neural Network (CNN) approach (Brook et al., 2020), UAS-based multispectral (5 bands across 450-800nm spectral region with spatial resolution of 5cm) imagery and point-based field spectroscopy (collecting 600 wavelength across  400-1000nm spectral region with a surface footprint of 1-2cm) in application to crop state estimation.</p><p>The test site is a portion of vineyard placed in southern Italy cultivated on Greco cultivar, in which the soil-plant and atmosphere system has been monitored during the 2020 vintage also through ecophysiological analyses. The data analysis will follow the methodology presented in a recently published paper (Polinova et al., 2018).</p><p>The study will connect the method and scale of spectral data collection with in vivo plant monitoring and prove that it has a significant impact on the vegetation state estimation results. It should be noted that each spectral data source has its advantages and drawbacks. The plant parameter of interest should determine not only the VIs type suitable for analysis but also the method of data collection.</p><p>The contribution has been realized within the CNR BIO-ECO project.</p>


2016 ◽  
Vol 22 (1) ◽  
pp. 95-107 ◽  
Author(s):  
Eder Paulo Moreira* ◽  
Márcio de Morisson Valeriano ◽  
Ieda Del Arco Sanches ◽  
Antonio Roberto Formaggio

The full potentiality of spectral vegetation indices (VIs) can only be evaluated after removing topographic, atmospheric and soil background effects from radiometric data. Concerning the former effect, the topographic effect was barely investigated in the context of VIs, despite the current availability correction methods and Digital elevation Model (DEM). In this study, we performed topographic correction on Landsat 5 TM spectral bands and evaluated the topographic effect on four VIs: NDVI, RVI, EVI and SAVI. The evaluation was based on analyses of mean and standard deviation of VIs and TM band 4 (near-infrared), and on linear regression analyses between these variables and the cosine of the solar incidence angle on terrain surface (cos i). The results indicated that VIs are less sensitive to topographic effect than the uncorrected spectral band. Among VIs, NDVI and RVI were less sensitive to topographic effect than EVI and SAVI. All VIs showed to be fully independent of topographic effect only after correction. It can be concluded that the topographic correction is required for a consistent reduction of the topographic effect on the VIs from rugged terrain.


2014 ◽  
Vol 157 ◽  
pp. 111-123 ◽  
Author(s):  
Fei Li ◽  
Yuxin Miao ◽  
Guohui Feng ◽  
Fei Yuan ◽  
Shanchao Yue ◽  
...  

2012 ◽  
Vol 500 ◽  
pp. 243-249
Author(s):  
Da Cheng Wang ◽  
Luo Rui Sen ◽  
Ji Hua Wang ◽  
Cun Jun Li ◽  
Dong Yan Zhang ◽  
...  

Canopy leaf Chlorophyll Density is a key index for evaluating crop potential photosynthetic efficiency and nutritional stress. Leaf Chlorophyll Density estimate using canopy hyperspectral vegetation indices provides a rapid and non-destructive method to evaluate yield predictions. A systematic comparison of two approaches to estimate Chlorophyll Density using 6 spectral vegetation indices (VIs) was presented in this study. In this study, the traditional statistical method based on power regression analyses was compared to the emerging computationally powerful techniques based on artificial neural network (ANN). The regression models of TCARI 、SAVI 、MSAVI and RDVIgreen were found to be more suitable for predicting Chlorophyll Density when only traditional statistical method was used especially TCARI and RDVI. ANN method was more appropriate to develop prediction models. The comparisons between these two methods were based on analysis of the statistic parameters. Results obtained using Root Mean Square Error (RMSE) for ANNs were significantly lower than the traditional method. From this analysis it is concluded that the neural network is more robust to train and estimate crop Chlorophyll Density from remote sensing data.


2017 ◽  
pp. 21-30 ◽  
Author(s):  
Lorenzo Barbanti ◽  
Josep Adroher ◽  
Júnior Melo Damian ◽  
Nicola Di Virgilio ◽  
Gloria Falsone ◽  
...  

Assessing the spatial variation of soil and crop properties is the basis for site specific management of crop practices in precision agriculture applications. To this aim, proximal and remote spectral vegetation indices are increasingly replacing soil analysis. In this study the spatial variation of soil properties, proximal and remote spectral vegetation indices were compared in a winter wheat (Triticum aestivum L.) crop grown in a 4.15 ha field in northern Italy. Soil analysis (particle size distribution, pH, carbonates, C, total N, available P, exchangeable cations and electrical conductivity) was geo-referentially carried out; the proximal indices chlorophyll content by N-Tester and normalised difference vegetation index through GreenSeeker were determined in three dates during stem elongation; the remote indices PurePixelTM chlorophyll index and PurePixelTM vegetation index were determined through the Landsat 8 satellite in three dates during the same wheat stage. Dry biomass yield (DBY), grain yield (GY) and yield components were determined at harvest. Soil, proximal and remote data were submitted to principal component analysis (PCA), and the retained PCs were clustered to delineate areas at low, intermediate and high yield potential, based on soil parameters (CLUsp), proximal (CLUpi), and remote vegetation indices (CLUri). DBY and GY were significantly correlated with several soil parameters and vegetation indices. Spatial distribution of soil and crop data consistently depicted a low performing area (GY<3 Mg ha–1) and a high performing one (GY>8 Mg ha–1). CLUsp determined a lower GY difference between low and high performing area (+60%), compared to CLUpi and CLUri (almost +100%). In CLUsp and CLUpi the low and high performing area were of similar size (25 and 29% for the two respective areas in CLUsp; 25 and 33% in CLUpi), whereas in CLUri they were quite different (16 and 46%). Lastly, yield potential levels determined by vegetation indices (CLUpi and CLUri) exhibited a better degree of agreement with DBY and GY levels, than soil parameters (CLUsp). In exchange for this, the above referred soil parameters are quite consistent in time, allowing soil data to be used for more years. On concluding, PCA followed by clustering resulted in a robust delineation of field areas at different yield potential. This is the premise for developing research driven strategies of practical use.


Sign in / Sign up

Export Citation Format

Share Document