Ionic exchanges, structural movements and driven reactions in conducting polymers from bending artificial muscles

2014 ◽  
Vol 199 ◽  
pp. 27-30 ◽  
Author(s):  
Toribio F. Otero ◽  
Jose G. Martinez
2009 ◽  
Vol 1234 ◽  
Author(s):  
Maria Joseph Bassil ◽  
Michael Ibrahim Ibrahim ◽  
Eddy Souaid ◽  
Georges El Haj Moussa ◽  
Mario Remond El Tahchi ◽  
...  

AbstractConducting polymers and hydrogels are two classes of polymers that currently receive an increasing attention in the field of biomaterials, particularly for their application in the assembly of artificial muscles. In this paper we present the development of Polyacrylamide (PAAM) microfibers and polyaniline (PANI) - poly vinyl alcohol (PVA) conductive gel membrane.The fabricated PAAM microfibers have diameters between 1 and 12μm depending on the preparation parameters. These microfibers respond instantaneously to 100mV electrical stimulation, which solves the problem of time response of the hydrogels. On the other hand, we showed that the inclusion of conducting chains within a crosslinked gel matrix allows combining the conductivity of the PANI with the mechanical flexibility of PVA in order to provide flexible gel membranes that can adhere to the PAAM microfibers to ensure their electrical stimulation.


MRS Advances ◽  
2018 ◽  
Vol 3 (27) ◽  
pp. 1543-1549 ◽  
Author(s):  
Keiichi Kaneto ◽  
Fumito Hata ◽  
Sadahito Uto

ABSTRACTElectroactive conducting polymers are suitable for soft actuators (artificial muscles). The actuation is induced by electrochemical oxidation of conducting polymer (film) in an electrolyte solution, due to insertion of bulky counter ions (dopant ions). The magnitude of deformation (strain) depends on the size of dopant ions and the degree of oxidation. It is worthwhile to know the relationship between the magnitudes of deformation and ion size. An electrodeposited Polypyrrole film was electrochemically cycled in aqueous electrolytes of NaCl, NaBr, NaNO3, NaBF4 and NaClO4. The strain of film during electrochemical oxidation and reduction was precisely measured using a laser displacement meter and a handmade apparatus. From the strain and electrical charges inserted in the film during oxidation, the volumes and radii of dopant ions were estimated, assuming the isotropic expansion of the film. The estimated anion radii of Cl-, Br-, NO3-, BF4- and ClO4- were 235, 246, 250, 270 and 290, respectively. The results were discussed taking the crystallographic and hydrated ion radii in literatures into consideration.


1995 ◽  
Vol 38 (2) ◽  
pp. 411-414 ◽  
Author(s):  
T.F. Otero ◽  
J.M. Sansiñena

e-Polymers ◽  
2003 ◽  
Vol 3 (1) ◽  
Author(s):  
María Teresa Cortés ◽  
Juan Carlos Moreno

Abstract Natural muscles have mechanical properties that conventional actuators do not possess. These natural machines show large strain, moderate stress, high efficiency and stability, fast response time, high power/weight ratio, long lifetime, etc. In the last years a great interest has arisen to develop materials that mimic natural mechanisms. Conducting polymers have an array of potential applications as artificial muscles since they are capable to produce a moderate displacement when submitted to an electrochemical reaction. This property has been used to fabricate actuator devices that imitate and even improve the performance of natural muscles. For example, conducting polymers show stresses 15 times higher than those generated by mammalian muscles, a high power/weight ratio and a high degree of compliance. However, there are also several responses that need improvement in the actuators based on conducting polymers. Strains are still c. 50% lower than in natural muscles. Most of this kind of actuators only work in liquid media. It is necessary to increase the response time and obtain more durable actuators with longer lifetime and higher stability. In spite of these disadvantages, the first actuators based on conducting polymers are being commercialized. This paper presents a brief summary of some of the actuators based on these polymers, focusing on their design, performance and actuation mechanism.


Author(s):  
J. Fink

Conducting polymers comprises a new class of materials achieving electrical conductivities which rival those of the best metals. The parent compounds (conjugated polymers) are quasi-one-dimensional semiconductors. These polymers can be doped by electron acceptors or electron donors. The prototype of these materials is polyacetylene (PA). There are various other conjugated polymers such as polyparaphenylene, polyphenylenevinylene, polypoyrrole or polythiophene. The doped systems, i.e. the conducting polymers, have intersting potential technological applications such as replacement of conventional metals in electronic shielding and antistatic equipment, rechargable batteries, and flexible light emitting diodes.Although these systems have been investigated almost 20 years, the electronic structure of the doped metallic systems is not clear and even the reason for the gap in undoped semiconducting systems is under discussion.


Sign in / Sign up

Export Citation Format

Share Document