Hierarchical three-dimensional MoS2/GO hybrid nanostructures for triethylamine-sensing applications with high sensitivity and selectivity

2020 ◽  
Vol 317 ◽  
pp. 128236 ◽  
Author(s):  
Xinghui Hou ◽  
Zhaowu Wang ◽  
Guijun Fan ◽  
Haipeng Ji ◽  
Shasha Yi ◽  
...  
2021 ◽  
Author(s):  
Luis David Rosales-Vazquez ◽  
Alejandro Dorazco-González ◽  
Victor Sanchez-Mendieta

Optical sensors with high sensitivity and selectivity, as important analytical tools for chemical and environmental research, can be accomplished by straightforward synthesis of luminescent one-, two- and three-dimensional Zn(II) and...


2016 ◽  
Vol 1812 ◽  
pp. 77-82
Author(s):  
J. Márquez ◽  
M. De la Cruz-Guzmán ◽  
L.F. Cházaro ◽  
G. Palestino

ABSTRACTPorous silicon (PSi) combines the potential of miniaturization with a very large surface area. The PSi surface can be chemically modified resulting in a high sensitivity (low detection threshold) device for chemical and biomolecular sensing. In previous work, we have shown that redox proteins and fluorescent ligands can be infiltrated into PSi (PSiMc) structures. The hybrid devices have shown interesting new properties produced by the coupling of the individual properties of PSi nanostructures and the modifiers. In this work, we have obtained a PSiMc/redox protein bioelectrode, which presents a quasi-reversible electrochemical response. This effect was attributed to the semiconducting nature of the PSi substrate and to the functional groups of the crosslinking molecules (MPTS), which together produce a capacitive effect on the device. On the other hand, the chemical modification of PSiMc with fluorescent ligands allowed us to fabricate fluorescent PSi hybrid nanostructures, which were tested for the detection of environmental pollutants such as heavy metals (specifically Hg2+). We found that the selectivity of this optical device depends on the selected recognizing molecule. The captured metal induces the formation of a metallic complex that shows higher fluorescence compared with the sensor device. These results demonstrate the viability of using porous silicon as optical sensors and electrochemical biosensors. The infiltration of fluorescent recognizing molecules and proteins into the PSi matrix were evaluated by specular reflectance, FTIR spectroscopy, fluorescence spectroscopy and cyclic voltammetry.


MRS Advances ◽  
2019 ◽  
Vol 4 (5-6) ◽  
pp. 319-324
Author(s):  
Takuji Ube ◽  
Akizumi Kawamoto ◽  
Tomoya Nishi ◽  
Takashi Ishiguro

ABSTRACTNano-porous palladium (Pd) thin films could potentially be applied to hydrogen gas sensing materials with high sensitivity and selectivity. In our previous study, a nano-porous Pd film was fabricated with a three-dimensional network structure from an AlPd mother alloy film by a dealloying method using the chelating ability of an organic acid. This process was simple and environmentally friendly because it only required organic acid in a ppm concentration, and did not exhaust a strong acid waste solution, including heavy metal ions. This method was modified to improve the Pd purity of the dealloyed specimen, reaction rate, and morphology control. In this study, the existence of a composition undulation pattern was shown in the AlPd mother alloy film, and its effects on the morphology of the dealloyed specimen were evaluated. Furthermore, this pattern could be controlled by N2 gas addition to the Ar sputtering gas during the preparation of the AlPd mother alloy film.


2021 ◽  
Vol 9 ◽  
Author(s):  
Jing Fan ◽  
Lili Qiu ◽  
Yu Qiao ◽  
Min Xue ◽  
Xiao Dong ◽  
...  

Photonic crystals (PhCs) with a brightly colored structure are novel materials and are widely used in chemical and biological sensing. Combining PhCs with molecular imprinting technology (MIT), the molecularly imprinted PhC (MIPC) sensors are fabricated, which can specifically recognize the target molecules. Aside from high sensitivity and selectivity, the MIPC sensors could recognize the naked eye detection because of its optical properties. In this review, an overview of recent advances in sensing applications of MIPC sensors including the responsive mechanisms, application in environmental monitoring, and the application to human health were illustrated. The MIPC sensors all responded to the analytes specifically and also showed high sensitivity in real samples, which provided a method to realize the rapid, convenient, naked eye, and real-time detection. Furthermore, the current limitations and potential future directions of MIPC sensors were also discussed.


2017 ◽  
Vol 4 (2) ◽  
pp. 256-260 ◽  
Author(s):  
Mei-Hui Yu ◽  
Tong-Liang Hu ◽  
Xian-He Bu

A new three-dimensional (3D) metal–organic framework exhibits high sensitivity and selectivity for Al3+ ions as a “turn on” fluorescent sensor.


Author(s):  
Minu Mathew ◽  
Chandra Sekhar Rout

This review details the fundamentals, working principles and recent developments of Schottky junctions based on 2D materials to emphasize their improved gas sensing properties including low working temperature, high sensitivity, and selectivity.


Materials ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 566 ◽  
Author(s):  
M. Akhtar ◽  
Ahmad Umar ◽  
Swati Sood ◽  
InSung Jung ◽  
H. Hegazy ◽  
...  

This paper reports the rapid synthesis, characterization, and photovoltaic and sensing applications of TiO2 nanoflowers prepared by a facile low-temperature solution process. The morphological characterizations clearly reveal the high-density growth of a three-dimensional flower-shaped structure composed of small petal-like rods. The detailed properties confirmed that the synthesized nanoflowers exhibited high crystallinity with anatase phase and possessed an energy bandgap of 3.2 eV. The synthesized TiO2 nanoflowers were utilized as photo-anode and electron-mediating materials to fabricate dye-sensitized solar cell (DSSC) and liquid nitroaniline sensor applications. The fabricated DSSC demonstrated a moderate conversion efficiency of ~3.64% with a maximum incident photon to current efficiency (IPCE) of ~41% at 540 nm. The fabricated liquid nitroaniline sensor demonstrated a good sensitivity of ~268.9 μA mM−1 cm−2 with a low detection limit of 1.05 mM in a short response time of 10 s.


2019 ◽  
Vol 11 (10) ◽  
pp. 1405-1409 ◽  
Author(s):  
Haoshuang Shen ◽  
Baoxia Liu ◽  
Daosheng Liu ◽  
Xu Zhu ◽  
Xiuhua Wei ◽  
...  

GMP ligand based LCP sensor for Cit with high sensitivity and selectivity was constructed.


Sign in / Sign up

Export Citation Format

Share Document