Nitrate removal from drained and reflooded fen soils affected by soil N transformation processes and plant uptake

2004 ◽  
Vol 36 (1) ◽  
pp. 77-90 ◽  
Author(s):  
U Rückauf
2016 ◽  
Vol 13 (19) ◽  
pp. 5609-5617 ◽  
Author(s):  
Xueru Huang ◽  
Xia Zhu-Barker ◽  
William R. Horwath ◽  
Sarwee J. Faeflen ◽  
Hongyan Luo ◽  
...  

Abstract. Iron (Fe) affects soil nitrogen (N) cycling processes both in anoxic and oxic environments. The role of Fe in soil N transformations including nitrification, mineralization, and immobilization, is influenced by redox activity, which is regulated by soil pH. The effect of Fe minerals, particularly oxides, on soil N transformation processes depends on soil pH, with Fe oxide often stimulating nitrification activity in the soil with low pH. We conducted lab incubations to investigate the effect of Fe oxide on N transformation rates in two subtropical agricultural soils with low pH (pH 5.1) and high pH (pH 7.8). 15N-labeled ammonium and nitrate were used separately to determine N transformation rates combined with Fe oxide (ferrihydrite) addition. Iron oxide stimulated net nitrification in low-pH soil (pH 5.1), while the opposite occurred in high-pH soil (pH 7.8). Compared to the control, Fe oxide decreased microbial immobilization of inorganic N by 50 % in low-pH soil but increased it by 45 % in high-pH soil. A likely explanation for the effects at low pH is that Fe oxide increased NH3-N availability by stimulating N mineralization and inhibiting N immobilization. These results indicate that Fe oxide plays an important role in soil N transformation processes and the magnitude of the effect of Fe oxide is dependent significantly on soil pH.


2020 ◽  
Vol 145 ◽  
pp. 103355 ◽  
Author(s):  
Kshitipati Padhan ◽  
Sudeshna Bhattacharjya ◽  
Asha Sahu ◽  
M.C. Manna ◽  
M.P. Sharma ◽  
...  

2019 ◽  
Vol 16 (21) ◽  
pp. 4277-4291
Author(s):  
Yanxia Nie ◽  
Xiaoge Han ◽  
Jie Chen ◽  
Mengcen Wang ◽  
Weijun Shen

Abstract. Elevated nitrogen (N) deposition affects soil N transformations in the N-rich soil of tropical forests. However, the change in soil functional microorganisms responsible for soil N cycling remains largely unknown. Here, we investigated the variation in soil inorganic N content, net N mineralization (Rm), net nitrification (Rn), inorganic N leaching (Rl), N2O efflux and N-related functional gene abundance in a tropical forest soil over a 2-year period with four levels of N addition. The responses of soil net N transformations (in situ Rm and Rn) and Rl to N additions were negligible during the first year of N inputs. The Rm, Rn, and Rl increased with the medium nitrogen (MN) and high nitrogen (HN) treatments relative to the control treatments in the second year of N additions. Furthermore, the Rm, Rn, and Rl were higher in the wet season than in the dry season. The Rm and Rn were mainly associated with the N addition-induced lower C:N ratio in the dry season but with higher microbial biomass in the wet season. Throughout the study period, high N additions increased the annual N2O emissions by 78 %. Overall, N additions significantly facilitated Rm, Rn, Rl and N2O emission. In addition, the MN and HN treatments increased the ammonia-oxidizing archaea (AOA) abundance by 17.3 % and 7.5 %, respectively. Meanwhile, the HN addition significantly increased the abundance of nirK denitrifiers but significantly decreased the abundance of ammonia-oxidizing bacteria (AOB) and nosZ-containing N2O reducers. To some extent, the variation in functional gene abundance was related to the corresponding N-transformation processes. Partial least squares path modelling (PLS-PM) indicated that inorganic N contents had significantly negative direct effects on the abundances of N-related functional genes in the wet season, implying that chronic N deposition would have a negative effect on the N-cycling-related microbes and the function of N transformation. Our results provide evidence that elevated N deposition may impose consistent stimulatory effects on soil N-transformation rates but differentiated impacts on related microbial functional genes. Long-term experimentation or observations are needed to decipher the interrelations between the rate of soil N-transformation processes and the abundance or expression of related functional genes.


2015 ◽  
Vol 15 (7) ◽  
pp. 1538-1548 ◽  
Author(s):  
Yu Xie ◽  
Jinbo Zhang ◽  
Lei Meng ◽  
Christoph Müller ◽  
Zucong Cai

2020 ◽  
Vol 202 ◽  
pp. 104651
Author(s):  
Xin Sun ◽  
Bin Liang ◽  
Jing Wang ◽  
Yi Cheng ◽  
Scott X. Chang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document