scholarly journals The simulated N deposition accelerates net N mineralization and nitrification in a tropical forest soil

2019 ◽  
Vol 16 (21) ◽  
pp. 4277-4291
Author(s):  
Yanxia Nie ◽  
Xiaoge Han ◽  
Jie Chen ◽  
Mengcen Wang ◽  
Weijun Shen

Abstract. Elevated nitrogen (N) deposition affects soil N transformations in the N-rich soil of tropical forests. However, the change in soil functional microorganisms responsible for soil N cycling remains largely unknown. Here, we investigated the variation in soil inorganic N content, net N mineralization (Rm), net nitrification (Rn), inorganic N leaching (Rl), N2O efflux and N-related functional gene abundance in a tropical forest soil over a 2-year period with four levels of N addition. The responses of soil net N transformations (in situ Rm and Rn) and Rl to N additions were negligible during the first year of N inputs. The Rm, Rn, and Rl increased with the medium nitrogen (MN) and high nitrogen (HN) treatments relative to the control treatments in the second year of N additions. Furthermore, the Rm, Rn, and Rl were higher in the wet season than in the dry season. The Rm and Rn were mainly associated with the N addition-induced lower C:N ratio in the dry season but with higher microbial biomass in the wet season. Throughout the study period, high N additions increased the annual N2O emissions by 78 %. Overall, N additions significantly facilitated Rm, Rn, Rl and N2O emission. In addition, the MN and HN treatments increased the ammonia-oxidizing archaea (AOA) abundance by 17.3 % and 7.5 %, respectively. Meanwhile, the HN addition significantly increased the abundance of nirK denitrifiers but significantly decreased the abundance of ammonia-oxidizing bacteria (AOB) and nosZ-containing N2O reducers. To some extent, the variation in functional gene abundance was related to the corresponding N-transformation processes. Partial least squares path modelling (PLS-PM) indicated that inorganic N contents had significantly negative direct effects on the abundances of N-related functional genes in the wet season, implying that chronic N deposition would have a negative effect on the N-cycling-related microbes and the function of N transformation. Our results provide evidence that elevated N deposition may impose consistent stimulatory effects on soil N-transformation rates but differentiated impacts on related microbial functional genes. Long-term experimentation or observations are needed to decipher the interrelations between the rate of soil N-transformation processes and the abundance or expression of related functional genes.

2019 ◽  
Author(s):  
Yanxia Nie ◽  
Xiaoge Han ◽  
Jie Chen ◽  
Mengcen Wang ◽  
Weijun Shen

Abstract. Elevated nitrogen (N) deposition affects soil N transformations in the N-rich soil of tropical forests. However, the change in soil functional microorganisms responsible for soil N cycling remains largely unknown. Here, we investigated the variation in soil inorganic N content, net N mineralization (Rm), net nitrification (Rn), inorganic N leaching (Rl), N2O efflux and N-related functional gene abundance in tropical forest soil over a two-year period with four levels of N addition. The responses of soil N transformations (in situ Rm, Rn and Rl) to N additions were delayed during the first year of N inputs. The Rm, Rn, and Rl increased with the medium nitrogen (MN) and high nitrogen (HN) treatments relative to the control treatments in the second year of N additions. Furthermore, the Rm, Rn, and Rl were higher in the wet season than in the dry season. The Rm and Rn were predominately driven by the lower C : N ratio under N addition in the dry season but by higher microbial biomass in the wet season. Throughout the study period, high N additions increased the annual N2O emissions by 78 %. Overall, N additions significantly facilitated soil N availability (Rm and Rn) and N loss (Rl and N2O emission), which had a stimulating effect on N transformations. In addition, the MN and HN treatments increased the ammonia-oxidizing archaea (AOA) abundance by 17.3 % and 7.5 %, respectively. Meanwhile, the HN addition significantly increased the abundance of nirK-denitrifiers but significantly decreased the abundance of ammonia-oxidizing bacteria (AOB) and nosZ-containing N2O reducers. To some extent, the variation in functional gene abundance was related to the corresponding N transformation processes. Partial least squares path modelling (PLS-PM) indicated that inorganic N contents had significant negative direct effects on the abundances of N-related functional genes in the wet season, implying that chronic N deposition would have a negative effect on the N-cycling-related microbes and the function of N transformation.


2017 ◽  
Vol 29 (3) ◽  
pp. 647-656 ◽  
Author(s):  
Peng Tian ◽  
Jinbo Zhang ◽  
Christoph Müller ◽  
Zucong Cai ◽  
Guangze Jin

Water ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 320
Author(s):  
Qianyao Si ◽  
Mary G. Lusk ◽  
Patrick W. Inglett

Stormwater infiltration basins (SIBs) are vegetated depressions that collect stormwater and allow it to infiltrate to underlying groundwater. Their pollutant removal efficiency is affected by the properties of the soils in which they are constructed. We assessed the soil nitrogen (N) cycle processes that produce and remove inorganic N in two urban SIBs, with the goal of further understanding the mechanisms that control N removal efficiency. We measured net N mineralization, nitrification, and potential denitrification in wet and dry seasons along a sedimentation gradient in two SIBs in the subtropical Tampa, Florida urban area. Net N mineralization was higher in the wet season than in the dry season; however, nitrification was higher in the dry season, providing a pool of highly mobile nitrate that would be susceptible to leaching during periodic dry season storms or with the onset of the following wet season. Denitrification decreased along the sediment gradient from the runoff inlet zone (up to 5.2 μg N/g h) to the outermost zone (up to 3.5 μg N/g h), providing significant spatial variation in inorganic N removal for the SIBs. Sediment accumulating around the inflow areas likely provided a carbon source, as well as maintained stable anaerobic conditions, which would enhance N removal.


2020 ◽  
Vol 145 ◽  
pp. 103355 ◽  
Author(s):  
Kshitipati Padhan ◽  
Sudeshna Bhattacharjya ◽  
Asha Sahu ◽  
M.C. Manna ◽  
M.P. Sharma ◽  
...  

2015 ◽  
Vol 15 (7) ◽  
pp. 1538-1548 ◽  
Author(s):  
Yu Xie ◽  
Jinbo Zhang ◽  
Lei Meng ◽  
Christoph Müller ◽  
Zucong Cai

2021 ◽  
Author(s):  
Zhijie Li ◽  
Zimin Li ◽  
Rüdiger Reichel ◽  
Kaijun Yang ◽  
Li Zhang ◽  
...  

Abstract Background Snow cover change has a great potential to impact soil nitrogen (N) pools and enzyme activities in boreal forests. Yet, the nature of this biochemical processes within soil aggregates is still limited. We conducted a snow manipulation experiment to investigate the effects of snow absence on N pools and enzyme activities within soil aggregates in a subalpine spruce forest on the eastern Tibetan Plateau of China. Results Snow absence increased extractable inorganic N pools (ammonium and nitrate) and enzyme activities, accompanying with the improvement of N mineralization rate. Regardless of snow manipulations, both soil extractable inorganic N and net N mineralization was higher in macroaggregates than that in the other two aggregates. In contrast, microaggregates had higher urease and nitrite reductase activities compared to macroaggregates and large macroaggregates. Compared with small macroaggregates and large macroaggregates, N pools and enzymes within microaggregates is more sensitive to snow absence. Conclusions Our results indicated that the impacts of snow cover change on soil N dynamic depend on aggregate sizes and winter conditions (e.g., snow cover and temperature). Such findings have important implication for soil N cycling in snow-covered subalpine forests experiencing pronounced winter climate change.


2021 ◽  
Author(s):  
Yinliu Wang ◽  
Signe Lett ◽  
Kathrin Rousk

Abstract Moss-associated nitrogen (N2) fixation is one of the main inputs of new N in pristine ecosystems that receive low amounts of atmospheric N deposition. Previous studies have shown that N2 fixation is inhibited by inorganic N (IN) inputs, but if N2 fixation in mosses is similarly affected by organic N (ON) remains unknown. Here, we assessed N2 fixation in two dominant mosses in boreal forests (Pleurozium schreberi and Sphagnum capillifolium) in response to different levels of N, simulating realistic (up to 4 kg N ha−1 yr−1) and extreme N deposition rates in pristine ecosystems (up to 20 kg N ha−1 yr−1) of IN (NH4NO3) and ON (alanine and urea). We also assessed if N2 fixation can recover from the N additions. In the realistic scenario, N2 fixation was inhibited by increasing NH4NO3 additions in P. schreberi but not in S. capillifolium, and alanine and urea stimulated N2 fixation in both moss species. In contrast, in the extreme N additions, increasing N inputs inhibited N2 fixation in both moss species and all N forms. Nitrogen fixation was more sensitive to N inputs in P. schreberi than in S. capillifolium and was higher in the recovery phase after the realistic compared to the extreme N additions. These results demonstrate that N2 fixation in mosses is less sensitive to organic than inorganic N inputs and highlight the importance of considering different N forms and species-specific responses when estimating the impact of N inputs on ecosystem functions such as moss-associated N2 fixation.


Sign in / Sign up

Export Citation Format

Share Document