N-driven changes in a plant community affect leaf-litter traits and may delay organic matter decomposition in a Mediterranean maquis

2013 ◽  
Vol 58 ◽  
pp. 163-171 ◽  
Author(s):  
Teresa Dias ◽  
Simon Oakley ◽  
Enrique Alarcón-Gutiérrez ◽  
Fabio Ziarelli ◽  
Henrique Trindade ◽  
...  
2021 ◽  
Vol 12 ◽  
Author(s):  
Sara Marañón-Jiménez ◽  
Dajana Radujković ◽  
Erik Verbruggen ◽  
Oriol Grau ◽  
Matthias Cuntz ◽  
...  

Ectomycorrhizal (EcM) and saprotrophic fungi interact in the breakdown of organic matter, but the mechanisms underlying the EcM role on organic matter decomposition are not totally clear. We hypothesized that the ecological relations between EcM and saprotroph fungi are modulated by resources availability and accessibility, determining decomposition rates. We manipulated the amount of leaf litter inputs (No-Litter, Control Litter, Doubled Litter) on Trenched (root exclusion) and Non-Trenched plots (with roots) in a temperate deciduous forest of EcM-associated trees. Resultant shifts in soil fungal communities were determined by phospholipid fatty acids and DNA sequencing after 3 years, and CO2 fluxes were measured throughout this period. Different levels of leaf litter inputs generated a gradient of organic substrate availability and accessibility, altering the composition and ecological relations between EcM and saprotroph fungal communities. EcM fungi dominated at low levels of fresh organic substrates and lower organic matter quality, where short-distances exploration types seem to be better competitors, whereas saprotrophs and longer exploration types of EcM fungi tended to dominate at high levels of leaf litter inputs, where labile organic substrates were easily accessible. We were, however, not able to detect unequivocal signs of competition between these fungal groups for common resources. These results point to the relevance of substrate quality and availability as key factors determining the role of EcM and saprotroph fungi on litter and soil organic matter decay and represent a path forward on the capacity of organic matter decomposition of different exploration types of EcM fungi.


2001 ◽  
Vol 10 (6) ◽  
pp. 639-660 ◽  
Author(s):  
Jacques Gignoux ◽  
Joanna House ◽  
David Hall ◽  
Dominique Masse ◽  
Hassan B. Nacro ◽  
...  

1967 ◽  
Vol 26 (2) ◽  
pp. 269-276 ◽  
Author(s):  
W. O. Enwezor

2021 ◽  
Author(s):  
A. L. Romero-Olivares ◽  
E. W. Morrison ◽  
A. Pringle ◽  
S. D. Frey

AbstractFungi are mediators of the nitrogen and carbon cycles in terrestrial ecosystems. Examining how nitrogen uptake and organic matter decomposition potential differs in fungi can provide insight into the underlying mechanisms driving fungal ecological processes and ecosystem functioning. In this study, we assessed the frequency of genes encoding for specific enzymes that facilitate nitrogen uptake and organic matter decomposition in 879 fungal genomes with fungal taxa grouped into trait-based categories. Our linked gene-trait data approach revealed that gene frequencies vary across and within trait-based groups and that trait-based categories differ in trait space. We present two examples of how this linked gene-trait approach can be used to address ecological questions. First, we show that this type of approach can help us better understand, and potentially predict, how fungi will respond to environmental stress. Specifically, we found that trait-based categories with high nitrogen uptake gene frequency increased in relative abundance when exposed to high soil nitrogen enrichment. Second, by comparing frequencies of nitrogen uptake and organic matter decomposition genes, we found that most ectomycorrhizal fungi in our dataset have similar gene frequencies to brown rot fungi. This demonstrates that gene-trait data approaches can shed light on potential evolutionary trajectories of life history traits in fungi. We present a framework for exploring nitrogen uptake and organic matter decomposition gene frequencies in fungal trait-based groups and provide two concise examples on how to use our framework to address ecological questions from a mechanistic perspective.


Sign in / Sign up

Export Citation Format

Share Document