scholarly journals Shifts in the Abundances of Saprotrophic and Ectomycorrhizal Fungi With Altered Leaf Litter Inputs

2021 ◽  
Vol 12 ◽  
Author(s):  
Sara Marañón-Jiménez ◽  
Dajana Radujković ◽  
Erik Verbruggen ◽  
Oriol Grau ◽  
Matthias Cuntz ◽  
...  

Ectomycorrhizal (EcM) and saprotrophic fungi interact in the breakdown of organic matter, but the mechanisms underlying the EcM role on organic matter decomposition are not totally clear. We hypothesized that the ecological relations between EcM and saprotroph fungi are modulated by resources availability and accessibility, determining decomposition rates. We manipulated the amount of leaf litter inputs (No-Litter, Control Litter, Doubled Litter) on Trenched (root exclusion) and Non-Trenched plots (with roots) in a temperate deciduous forest of EcM-associated trees. Resultant shifts in soil fungal communities were determined by phospholipid fatty acids and DNA sequencing after 3 years, and CO2 fluxes were measured throughout this period. Different levels of leaf litter inputs generated a gradient of organic substrate availability and accessibility, altering the composition and ecological relations between EcM and saprotroph fungal communities. EcM fungi dominated at low levels of fresh organic substrates and lower organic matter quality, where short-distances exploration types seem to be better competitors, whereas saprotrophs and longer exploration types of EcM fungi tended to dominate at high levels of leaf litter inputs, where labile organic substrates were easily accessible. We were, however, not able to detect unequivocal signs of competition between these fungal groups for common resources. These results point to the relevance of substrate quality and availability as key factors determining the role of EcM and saprotroph fungi on litter and soil organic matter decay and represent a path forward on the capacity of organic matter decomposition of different exploration types of EcM fungi.

2019 ◽  
Vol 193 (2) ◽  
pp. 131-142
Author(s):  
Verónica Díaz-Villanueva

Forest streams receive large amounts of leaves whose leachates are an important source of dissolved organic matter (DOM), providing not only carbon but also organic nutrients to the microbial communities in streams. I carried out a field study to evaluate the effect of different DOM concentrations on the biofilm structure and functional traits in two similar forest streams belonging to the same catchment. I compared biofilm biomass and nutri- ent content throughout one year, algal species composition, and biofilm community-level physiological profiles in two streams with different DOM concentration and aromaticity. Dissolved nutrient concentrations were higher in the stream with higher DOM concentration, with a concomitant higher biofilm biomass, and there was also a temporal pattern, with higher values during the autumn. Phosphorus content in biofilms was also higher in the high DOM stream, coincidently with a higher capacity of the community to utilize organic P source (glucose-1-P) as a substrate. In contrast, the biofilms from the stream with lower DOM concentrations preferentially used N-organic substrates (amino acids and amines). These results reveal that the biofilms of forest streams make use of organic matter nutrients, so that streams with different DOM loads may differ in biofilm biomass due to changes in both bacterial and autotrophic biomass. In addition, biofilm dynamics may be related to forest phenology, as the highest OM input in this deciduous forest is represented by tree leaves, which supply DOM through leachates, and in particular, with P-rich leachates. In conclusion, different DOM concentrations in two nearby streams led to differences in the community-level physiological profile, as has been previously demonstrated at larger spatial scales in oceans, lakes and along larger rivers.


2006 ◽  
Vol 52 (8) ◽  
pp. 701-716 ◽  
Author(s):  
T Osono

The ecology of endophytic and epiphytic phyllosphere fungi of forest trees is reviewed with special emphasis on the development of decomposer fungal communities and decomposition processes of leaf litter. A total of 41 genera of phyllosphere fungi have been reported to occur on leaf litter of tree species in 19 genera. The relative proportion of phyllosphere fungi in decomposer fungal communities ranges from 2% to 100%. Phyllosphere fungi generally disappear in the early stages of decomposition, although a few species persist until the late stages. Phyllosphere fungi have the ability to utilize various organic compounds as carbon sources, and the marked decomposing ability is associated with ligninolytic activity. The role of phyllosphere fungi in the decomposition of soluble components during the early stages is relatively small in spite of their frequent occurrence. Recently, the roles of phyllosphere fungi in the decomposition of structural components have been documented with reference to lignin and cellulose decomposition, nutrient dynamics, and accumulation and decomposition of soil organic matter. It is clear from this review that several of the common phyllosphere fungi of forest trees are primarily saprobic, being specifically adapted to colonize and utilize dead host tissue, and that some phyllosphere fungi with marked abilities to decompose litter components play important roles in decomposition of structural components, nutrient dynamics, and soil organic matter accumulation.Key words: carbon cycle, community, endophyte, epiphyte, succession.


2019 ◽  
Vol 440 (1-2) ◽  
pp. 473-490 ◽  
Author(s):  
Oyindamola Jackson ◽  
Richard S. Quilliam ◽  
Andy Stott ◽  
Helen Grant ◽  
Jens-Arne Subke

2014 ◽  
Vol 5 (2) ◽  
pp. 155-168 ◽  
Author(s):  
Phuong-Thi Ngo ◽  
Cornelia Rumpel ◽  
Thuy Doan Thu ◽  
Thierry Henry-des-Tureaux ◽  
Dinh-Kim Dang ◽  
...  

2006 ◽  
Vol 86 (Special Issue) ◽  
pp. 247-256 ◽  
Author(s):  
D. Paré ◽  
R. Boutin ◽  
G. R. Larocque ◽  
F. Raulier

The sensitivity of soil organic matter decomposition to temperature change is critical tothe global carbon balance and to whether soils will respond with positive feedback to climate change. Forest cover determines litter composition, which controls to a large extent soil organic matter quality and its sensitivity to temperature. The effect of temperature on soil organic matter decomposition was studied along a latitudinal gradient encompassing sugar maple, balsam fir and black spruce forest types. Long-term laboratory soil incubations conducted at four different temperatures were used to discriminate the effect of temperature from that of organic matter quality on decomposition rates. The specific C mineralization rate of the humus layer was highest for balsam fir sites, intermediate for one sugar maple site and lowest for black spruce sites and the other sugar maple site. However, considering the total C pools of the FH layer and of the top 20 cm of mineral soil, it was estimated that coniferous sites exhibit a higher C efflux than sugar maple soils at any given temperature. Estimated C mineralization rates in the field using the temperature records for each individual site showed the same trends despite cooler temperature regimes for the coniferous sites. The Q10 respiration rates of the humus layer of all sites increased as the temperature got warmer. A significant effect of temperature on the pool size of labile C in the mineral soil was detected for some sites suggesting a potential long-term loss of C upon warming. The low estimated C evolution rates of sugar maple soils were perhaps due to the greater decomposition activity within the L layer, before the litter C enters underlying soil pools. These observations suggest that coniferous soils are not more resistant than deciduous forests to increasing their specific rates of soil heterotrophic respiration upon warming. Key words: Soil organic carbon, forest type, forest composition, warming, long-term incubation, labile carbon


2013 ◽  
Vol 58 ◽  
pp. 163-171 ◽  
Author(s):  
Teresa Dias ◽  
Simon Oakley ◽  
Enrique Alarcón-Gutiérrez ◽  
Fabio Ziarelli ◽  
Henrique Trindade ◽  
...  

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12076
Author(s):  
Jacek Olchowik ◽  
Dorota Hilszczańska ◽  
Marcin Studnicki ◽  
Tadeusz Malewski ◽  
Khalil Kariman ◽  
...  

Background Global warming and drying have markedly enhanced in most forests the risk of fires across the world, which can affect the taxonomic and functional composition of key tree-associated organisms such as ectomycorrhizal (ECM) fungi. The present study was conducted to characterise the alterations in the extent of root ECM colonisation, the ECM fungal communities, and their exploration types (i.e., indicator of ECM soil foraging strategies) in regenerated pines within a burned site as compared with an unburned site (five years after the fire event) in the Forest District Myszyniec, Poland. Methods To assess the ECM fungal communities of burned and control sites, soil soil-root monoliths were collected from the study sites in September 2019. A total of 96 soil subsamples were collected for soil analysis and mycorrhizal assessment (6 trees × 2 sites × 4 study plots × 2 microsites (north and south) = 96 subsamples). Results The percentage of root ECM colonisation was significantly lower in the burned site in comparison with the unburned (control) site. However, the ECM species richness did not differ between the control and burned sites. The identified ECM species in both sites were Imleria badia, Thelephora terrestris, Russula paludosa, R. badia, R. turci, R. vesca, Lactarius plumbeus, Phialocephala fortinii, and Hyaloscypha variabilis. The most frequent species in the burned and control sites were I. badia and T. terrestris, respectively. The relative abundances of contact, medium-distance smooth and long-distance exploration types in the burned site were significantly different from the control site, dominated by the medium-distance exploration type in both sites. The abundance of the long-distance exploration type in the burned site was markedly greater (27%) than that of the control site (14%), suggesting that the fire event had favoured this ECM foraging strategy. The results demonstrated that the fire led to reduced ECM colonisation of Scots pine trees in the burned site whereas the species richness was not affected, which can be attributed to degrees of fire-resistance in the ECM species, survival of ECM propagules in deeper soil layers, and/or continuous entry of spores/propagules of the ECM fungi from the adjacent forests via wind, water run-off or animals.


2021 ◽  
Vol 145 (11-12) ◽  
pp. 547-556
Author(s):  
Marina Milović ◽  
Saša Orlović ◽  
Zoran Galić ◽  
Saša Pekeč ◽  
Branislav Kovačević ◽  
...  

Although sessile oak is one of the most important deciduous forest tree species in Europe, data on the diversity of ectomycorrhizal (ECM) fungi on sessile oaks in the Republic of Serbia are scarce. The aim of this study was to provide the first insight into the diversity of ECM fungi on sessile oak in Serbia. Two sites Info center and Brankovac, located in National Park Fruška gora were chosen. ECM fungi were identified combining morphological and anatomical characterization with molecular analysis of nuclear rDNA internal transcribed spacer (ITS) region. All vital ECM root tips were counted, diversity indices were calculated, and ECM fungi were classified into the exploration types. The granulometric and chemical composition of soil were analyzed as well. At both sites, 26 different ECM fungal taxa were recorded in total, 17 taxa were observed at the site Info center and 12 taxa at Brankovac. ECM communities consisted of a few abundant taxa and a larger number of rare taxa. Lactarius quietus, Cenococcum geophilum, and Tomentella sublilacina were recorded at both sites. High abundance of contact and short-distance exploration types recorded in studied stands suggests that soils are sufficiently rich in total nitrogen and organic matter. Values of diversity indices recorded in studied sessile oak stands from Fruška gora were lower in comparison to those obtained in stands of different oak species across Europe which is likely induced by drought. To get a more thorough insight into the diversity of ECM fungi on sessile oak, research should be continued at more sites and seasonal dynamics should be included.


Sign in / Sign up

Export Citation Format

Share Document