Soil microbial community under a nurse-plant species changes in composition, biomass and activity as the nurse grows

2013 ◽  
Vol 64 ◽  
pp. 139-146 ◽  
Author(s):  
S. Hortal ◽  
F. Bastida ◽  
C. Armas ◽  
Y.M. Lozano ◽  
J.L. Moreno ◽  
...  
Author(s):  
Aditi Sengupta ◽  
Priyanka Kushwaha ◽  
Antonia Jim ◽  
Peter A. Troch ◽  
Raina Maier

The plant-microbe-soil nexus is critical in maintaining biogeochemical balance of the biosphere. However, soil loss and land degradation are occurring at alarmingly high rates, with soil loss exceeding soil formation rates. This necessitates evaluating marginal soils for their capacity to support and sustain plant growth. In a greenhouse study, we evaluated the capacity of marginal incipient basaltic parent material to support native plant growth, and the associated variation in soil microbial community dynamics. Three plant species, native to the Southwestern Arizona-Sonora region were tested with three soil treatments including basaltic parent material, parent material amended with 20% compost, and potting soil. The parent material with and without compost supported germination and growth of all the plant species, though germination was lower than the potting soil. A 16S rRNA amplicon sequencing approach showed Proteobacteria to be the most abundant phyla in both parent material and potting soil, followed by Actinobacteria. Microbial community composition had strong correlations with soil characteristics but not plant attributes within a given soil material. Predictive functional potential capacity of the communities revealed chemoheterotrophy as the most abundant metabolism within the parent material, while photoheterotrophy and anoxygenic photoautotrophy were prevalent in the potting soil. These results show that marginal incipient basaltic soil has the ability to support native plant species growth, and non-linear associations may exist between plant-marginal soil-microbial interactions.


2019 ◽  
Vol 116 (15) ◽  
pp. 7371-7376 ◽  
Author(s):  
Jenalle L. Eck ◽  
Simon M. Stump ◽  
Camille S. Delavaux ◽  
Scott A. Mangan ◽  
Liza S. Comita

Microbes are thought to maintain diversity in plant communities by specializing on particular species, but it is not known whether microbes that specialize within species (i.e., on genotypes) affect diversity or dynamics in plant communities. Here we show that soil microbes can specialize at the within-population level in a wild plant species, and that such specialization could promote species diversity and seed dispersal in plant communities. In a shadehouse experiment in Panama, we found that seedlings of the native tree species, Virola surinamensis (Myristicaceae), had reduced performance in the soil microbial community of their maternal tree compared with in the soil microbial community of a nonmaternal tree from the same population. Performance differences were unrelated to soil nutrients or to colonization by mycorrhizal fungi, suggesting that highly specialized pathogens were the mechanism reducing seedling performance in maternal soils. We then constructed a simulation model to explore the ecological and evolutionary consequences of genotype-specific pathogens in multispecies plant communities. Model results indicated that genotype-specific pathogens promote plant species coexistence—albeit less strongly than species-specific pathogens—and are most effective at maintaining species richness when genetic diversity is relatively low. Simulations also revealed that genotype-specific pathogens select for increased seed dispersal relative to species-specific pathogens, potentially helping to create seed dispersal landscapes that allow pathogens to more effectively promote diversity. Combined, our results reveal that soil microbes can specialize within wild plant populations, affecting seedling performance near conspecific adults and influencing plant community dynamics on ecological and evolutionary time scales.


2020 ◽  
Vol 12 (10) ◽  
pp. 4209
Author(s):  
Aditi Sengupta ◽  
Priyanka Kushwaha ◽  
Antonia Jim ◽  
Peter A. Troch ◽  
Raina Maier

The plant–microbe–soil nexus is critical in maintaining biogeochemical balance of the biosphere. However, soil loss and land degradation are occurring at alarmingly high rates, with soil loss exceeding soil formation rates. This necessitates evaluating marginal soils for their capacity to support and sustain plant growth. In a greenhouse study, we evaluated the capacity of marginal incipient basaltic parent material to support native plant growth and the associated variation in soil microbial community dynamics. Three plant species, native to the Southwestern Arizona-Sonora region, were tested with three soil treatments, including basaltic parent material, parent material amended with 20% compost, and potting soil. The parent material with and without compost supported 15%, 40%, and 70% germination of Common Bean (Phaseolus vulgaris L. ‘Tarahumara Norteño’), Mesquite (Prosopis pubescens Benth), and Panic Grass (Panicum Sonorum Beal), respectively, though germination was lower than in the potting soil. Plant growth was also sustained over the 30 day period, with plants in parent material (with and without amendment) reaching 50% height compared to those in the potting soil. A 16S rRNA gene amplicon sequencing approach showed Proteobacteria to be the most abundant phyla in both parent material and potting soil, followed by Actinobacteria. The potting soil showed Gammaproteobacteria (19.6%) to be the second most abundant class, but its abundance was reduced in the soil + plants treatment (5.6%–9.6%). Within the basalt soil type, Alphaproteobacteria (42.7%) and Actinobacteria (16.3%) had a higher abundance in the evaluated bean plant species. Microbial community composition had strong correlations with soil characteristics, but not plant attributes within a given soil material. Predictive functional potential capacity of the communities revealed chemoheterotrophy as the most abundant metabolism within the parent material, while photoheterotrophy and anoxygenic photoautotrophy were prevalent in the potting soil. These results show that marginal incipient basaltic soil, both with and without compost amendments, can support native plant species growth, and non-linear associations may exist between plant–marginal soil–microbial interactions.


Sign in / Sign up

Export Citation Format

Share Document