sage scrub
Recently Published Documents


TOTAL DOCUMENTS

111
(FIVE YEARS 15)

H-INDEX

27
(FIVE YEARS 2)

PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0254398
Author(s):  
Diane M. Thomson ◽  
Wallace M. Meyer ◽  
Isobel F. Whitcomb

Non-native plant invasions, changes in fire regime, and increasing drought stress all pose important threats to biodiverse mediterranean-climate shrublands. These factors can also interact, with fire and drought potentially creating opportunities for non-native species to establish dominance before native shrubs recover. We carried out post-fire demographic monitoring of the common native shrub Artemisia californica in a southern California sage scrub fragment for 7 years, including several with very low rainfall. Experimental removals of non-native plants were included for the first 4 years. We quantified A. californica post-fire crown resprouting and seedling emergence, and tested effects of precipitation, non-native plants, and their interactions on seedling and adult survival. Only 7 A. californica were confirmed as resprouts; almost all individuals established after the fire from seedlings, with 90% of emergence occurring in the second growing year after fire (spring 2015). Higher spring precipitation increased both adult and seedling survival. Non-native grasses and forbs rapidly recolonized control plots, but the removal treatment reduced non-native cover by nearly 60%. For seedlings, non-native removal reduced the probability of dropping leaves by start of summer drought and increased survival both directly and through positive interactions with rainfall. Non-native removal also reduced mortality in smaller adult plants. By 2020, mean A. californica canopy area was nearly four times greater in non-native removal plots. These findings reinforce the high vulnerability of sage scrub habitat to post-fire loss of shrub cover and potential type conversion, particularly with increasing drought frequency and in stands and species with limited crown resprouting. Yet they also illustrate the potential for targeted management of non-natives immediately after fire to promote recovery of native shrubs in this increasingly endangered community.


2021 ◽  
Author(s):  
Stephanie Ma Lucero ◽  
Nathan Emery ◽  
Carla M D'Antonio

Questions: In southern California, shortened fire return intervals may contribute to a decrease in native chaparral shrub presence and an increase in non-native annual grass presence. To test the hypothesis that short-fire return intervals promote a loss in shrub cover, we examined the contribution of single short-interval fires and abiotic conditions on the change of shrub cover within Ventura and Los Angeles counties. Through evaluating pre- and post-fire historical aerial images, we answered the following questions, 1) How has vegetation type cover changed after repeat fires? and 2) What landscape variables contribute the most to the observed change? Location: Ventura County and Los Angeles County, California, USA. Methods: We assessed the impact of a single short-interval fire by comparing vegetation recovery in adjacent once- and twice-burned fire burn polygons (long- and short-interval respectively). Pixel plots were examined within each polygon and vegetation cover was classified to vegetation type. We determined the best predictor of vegetation type cover with a linear mixed effects model comparison using Akaike Information Criterion. Results: Pre-fire and post-fire community type cover was highly correlated. Burn interval was the best predictor of tree cover change (lower cover in twice-burned pixel plots). Aspect was the best predictor of sage scrub cover change (greater cover on north-facing aspects). Years since fire was the best predictor of chaparral cover change (positive correlation) and sage scrub cover change (negative correlation). Conversion of chaparral to sage scrub cover was more likely to occur than conversion of chaparral to annual grass cover. Conclusions: Our study did not find extensive evidence of a decrease in chaparral shrub cover due to a single short-interval fire. Instead, post-fire cover was highly correlated with pre-fire cover. Chaparral recovery, however, was dynamic suggesting that stand recovery may be strongly influenced by local scale conditions and processes.


Diversity ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 217
Author(s):  
Manya Singh ◽  
Wallace M. Meyer

Changes in plant assemblages can influence biotic and abiotic soil conditions. These changes can cause plant–soil feedbacks that can inhibit or facilitate plant germination and growth. Here, we contribute to a growing literature examining plant–soil feedbacks in the endangered sage scrub ecosystem by examining the germination and growth of Artemisia californica, the dominant native shrub species in the ecosystem, in soil conditioned by two widespread plant invaders (Brassica nigra, Bromus madritensis ssp. rubens), and the germination and growth of these invasive species in conspecific and heterospecific soils. Our findings suggest that: (i) A. californica soils can limit establishment of some species (B. nigra) but not others (B. madritensis), (ii) A. californica soil conditions reduce growth of all plant species, and (iii) non-natives are negatively impacted by soil microbes, but in some contexts can do better in heterospecific soil. As our findings were often incongruent with other studies that examined interactions among similar species at other sites, we suggest that we are at our infancy of understanding these complex interactions, and that developing a predictive framework for understanding plant soil feedbacks in the sage scrub ecosystem involves understanding how various plant species respond in different soil contexts within the ecosystem.


2019 ◽  
Vol 37 (3) ◽  
pp. 142-142
Author(s):  
Peter A. Bowler ◽  
Jenny Liou ◽  
Jocelyn Moon

Sign in / Sign up

Export Citation Format

Share Document