Indication of rapid soil food web recovery by nematode-derived indices in restored agricultural soil after open-cast lignite mining

2017 ◽  
Vol 115 ◽  
pp. 261-264 ◽  
Author(s):  
Rüdiger Reichel ◽  
Mathias Hänsch ◽  
Nicolas Brüggemann
2021 ◽  
Author(s):  
Tanja Strecker ◽  
Annette Jesch ◽  
Dörte Bachmann ◽  
Melissa Jüds ◽  
Kevin Karbstein ◽  
...  

2011 ◽  
Vol 43 (4) ◽  
pp. 726-735 ◽  
Author(s):  
Sina Adl ◽  
Vincent Girard ◽  
Gérard Breton ◽  
Malvina Lak ◽  
Ardhini Maharning ◽  
...  

Diversity ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 101
Author(s):  
Haddish Melakeberhan ◽  
ZinThuZar Maung ◽  
Isaac Lartey ◽  
Senol Yildiz ◽  
Jenni Gronseth ◽  
...  

Determining if the vast soil health degradations across the seven major soil groups (orders) of Sub-Saharan Africa (SSA) can be managed on the basis of a one-size-fits-all or location-specific approach is limited by a lack of soil group-based understanding of soil health degradations. We used the relationship between changes in nematode population dynamics relative to food and reproduction (enrichment, EI) and resistance to disturbance (structure, SI) indices to characterize the soil food web (SFW) and soil health conditions of Ferralsol, Lithosol and Nitosol soil groups in Ghana, Kenya and Malawi. We applied bivariate correlations of EI, SI, soil pH, soil organic carbon (SOC), and texture (sand, silt and clay) to identify integrated indicator parameters, and principal component analysis (PCA) to determine how all measured parameters, soil groups, and countries align. A total of 512 georeferenced soil samples from disturbed (agricultural) and undisturbed (natural vegetation) landscapes were analyzed. Nematode trophic group abundance was low and varied by soil group, landscape and country. The resource-limited and degraded SFW conditions separated by soil groups and by country. EI and SI correlation with SOC varied by landscape, soil group or country. PCA alignment showed separation of soil groups within and across countries. The study developed the first biophysicochemical proof-of-concept that the soil groups need to be treated separately when formulating scalable soil health management strategies in SSA.


Geoderma ◽  
2022 ◽  
Vol 410 ◽  
pp. 115672
Author(s):  
Feng Sun ◽  
Lingda Zeng ◽  
Minling Cai ◽  
Matthieu Chauvat ◽  
Estelle Forey ◽  
...  

2020 ◽  
Vol 52 ◽  
pp. 1-17
Author(s):  
A. Habteweld ◽  
D. Brainard ◽  
A. Kravchencko ◽  
P. S. Grewal ◽  
H. Melakeberhan

2019 ◽  
Vol 2 (1) ◽  
Author(s):  
Ina Schaefer ◽  
Tancredi Caruso

Abstract The early evolution of ecosystems in Palaeozoic soils remains poorly understood because the fossil record is sparse, despite the preservation of soil microarthropods already from the Early Devonian (~410 Mya). The soil food web plays a key role in the functioning of ecosystems and its organisms currently express traits that have evolved over 400 my. Here, we conducted a phylogenetic trait analysis of a major soil animal group (Oribatida) to reveal the deep time story of the soil food web. We conclude that this group, central to the trophic structure of the soil food web, diversified in the early Paleozoic and resulted in functionally complex food webs by the late Devonian. The evolution of body size, form, and an astonishing trophic diversity demonstrates that the soil food web was as structured as current food webs already in the Devonian, facilitating the establishment of higher plants in the late Paleozoic.


Sign in / Sign up

Export Citation Format

Share Document