Relationship between limiting shear strain and reduction of shear moduli due to liquefaction in large strain torsional shear tests

2013 ◽  
Vol 49 ◽  
pp. 122-134 ◽  
Author(s):  
Takashi Kiyota ◽  
Junichi Koseki ◽  
Takeshi Sato
2010 ◽  
Vol 168-170 ◽  
pp. 286-292
Author(s):  
Hua Pan ◽  
Guo Xing Chen ◽  
Tian Sun

Cyclic triaxial and cyclic torsional shear tests were performed on undisturbed marine silty clay by the hollow cylinder apparatus, and the Young’s modulus and shear modulus were obtained respectively. Furthermore, the influence of effective confining pressure and stress ratio on dynamic Poisson’s ratio was investigated on this basis. It was found that the dynamic Poisson’s ratio increases with generalized shear strain, but decreases with increasing effective confining pressure and stress ratio. The effect of effective confining pressure and stress ratio on dynamic Poisson’s ratio was weakened as the generalized shear strain was increasing. The dynamic Poisson’s ratio was about 0.48 when the Poisson’s ratio was increased to 1.8E-2 or so, and the test was terminated. There was no shear dilatation during all tests because the Poisson’s ratios were smaller than 0.5. It indicates that the marine silty clay tested in this paper has a good stability under cyclic loads.


2008 ◽  
Vol 48 (5) ◽  
pp. 727-739 ◽  
Author(s):  
Takashi Kiyota ◽  
Takeshi Sato ◽  
Junichi Koseki ◽  
Mohammad Abadimarand

2008 ◽  
Vol 130 (5) ◽  
Author(s):  
J. Scott Van Epps ◽  
David A. Vorp

The biomechanical milieu of the coronary arteries is unique in that they experience mechanical deformations of twisting, bending, and stretching due to their tethering to the epicardial surface. Spatial variations in stresses caused by these deformations could account for the heterogeneity of atherosclerotic plaques within the coronary tree. The goal of this work was to utilize previously reported shear moduli to calculate a shear strain parameter for a Fung-type exponential model of the arterial wall and determine if this single constant can account for the observed behavior of arterial segments under torsion. A Fung-type exponential strain-energy function was adapted to include a torsional shear strain term. The material parameter for this term was determined from previously published data describing the relationship between shear modulus and circumferential stress and longitudinal stretch ratio. Values for the shear strain parameter were determined for three geometries representing the mean porcine left anterior descending coronary artery dimensions plus or minus one standard deviation. Finite element simulation of triaxial biomechanical testing was then used to validate the model. The mean value calculated for the shear strain parameter was 0.0759±0.0009 (N=3 geometries). In silico triaxial experiments demonstrated that the shear modulus is directly proportional to the applied pressure at a constant longitudinal stretch ratio and to the stretch ratio at a constant pressure. Shear moduli determined from these simulations showed excellent agreement to shear moduli reported in literature. Previously published models describing the torsional shear behavior of porcine coronary arteries require a total of six independent constants. We have reduced that description into a single parameter in a Fung-type exponential strain-energy model. This model will aid in the estimation of wall stress distributions of vascular segments undergoing torsion, as such information could provide insight into the role of mechanical stimuli in the localization of atherosclerotic plaque formation.


1986 ◽  
Vol 59 (2) ◽  
pp. 241-254 ◽  
Author(s):  
Koichi Arai ◽  
John D. Ferry

Abstract Combined measurements of shear-stress relaxation and differential dynamic storage and loss shear moduli G′ and G″ following a single-step shear strain of 0.4, as well as measurements of dynamic moduli in on-off strain and stress histories, have been made on styrene-butadiene rubber (type 1502) filled with carbon black (N299) at loadings of 40, 50, 60, and 70 phr, with 10 phr Sundex 790 oil. Both cured and uncured compounds were studied at temperatures of 25.0° and −0.5°C respectively. The maximum oscillatory shear strain was 0.005, and the frequency was from 0.4 to 1.8 Hz. The storage shear modulus G′(ω, 0) measured without imposition of static strain was approximately proportional to the fourth power of the volume fraction of black. With imposition of single-step strain, the differential storage modulus G′(ω, γ; t) fell 25% to 35% but slowly recovered somewhat while the strain was maintained for 4 to 5 h. During this period, the static stress relaxed continuously. At the highest content of black, the drop in log G′ was the least, and the final recovery was closest to the initial value of G′(ω, 0). In on-off experiments on uncured compounds, when the strain was “on” for 250 s and then “off” (either stress or strain returned to zero), G′ decreased when the strain was imposed as before and decreased further when it was removed. In the “off” state, G′ recovered partially but did not attain the initial value of G′(ω, 0) even after 7 d. In on-off experiments on cured compounds, removal of stress caused G′ to either increase or decrease depending on the content of black; in any case, in the “off” state, G′ recovered completely to its initial value. Other strain histories involved on-off sequences with different “on” periods and multiple on-off sequences with different “on” periods and multiple on-off sequences. The results are interpreted in terms of a network of black particle aggregates whose contacts can slowly rearrange even in the absence of stress as shown by stress relaxation at very small strains in earlier studies. In large strains, it is postulated that some contacts are broken but can partially reform, especially in the stress-free state; the rate of reformation is similar to that of small-strain stress relaxation. Only in cured compounds is the network fully recovered, presumably because in these the particles are imbedded in a crosslinked matrix and have crosslinked bridges that facilitate reestablishment of interparticle contacts, whereas in uncured compounds the matrix has no crosslinks and the bound rubber on adjacent particles may be merely entangled.


Sign in / Sign up

Export Citation Format

Share Document