scholarly journals Cold-formed steel centre-sheathed (mid-ply) shear walls

2018 ◽  
Vol 114 ◽  
pp. 253-266 ◽  
Author(s):  
Vincent Brière ◽  
Veronica Santos ◽  
Colin A. Rogers
Structures ◽  
2021 ◽  
Vol 33 ◽  
pp. 3588-3604
Author(s):  
Wenying Zhang ◽  
Xiangzhi Xu ◽  
Yu Zheng ◽  
Shuangshuang Wang ◽  
Yuanqi Li

2021 ◽  
Vol 885 ◽  
pp. 127-132
Author(s):  
Sarmad Shakeel ◽  
Alessia Campiche

The current edition of Eurocode 8 does not cover the design of the Cold-Formed steel (CFS) building structures under the seismic design condition. As part of the revision process of Euro-code 8 to reflect the outcomes of extensive research carried out in the past decade, University of Naples “Federico II” is involved in the validation of existing seismic design criteria and development of new rules for the design of CFS systems. In particular, different types of Lateral Force Resisting System (LFRS) are analyzed that can be listed in the second generation of Eurocode 8. The investigated LFRS’s include CFS strap braced walls and CFS shear walls with steel sheets, wood, or gypsum sheathing. This paper provides the background information on the research works and the reference design standards, already being used in some parts of the world, which formed the basis of design criteria for these LFRS systems. The design criteria for the LFRS-s common to CFS buildings would include rules necessary for ensuring the dissipative behavior, appropriate values of the behavior factor, guidelines to predict the design strength, geometrical and mechanical limitations.


2019 ◽  
Vol 2019 ◽  
pp. 1-14
Author(s):  
Xingxing Wang ◽  
Youcheng Li ◽  
Wei Wang ◽  
Shangxin Gao

The fastener-based computational model is improved and extended to predict the shear performance of reinforced cold-formed steel (RCFS) shear walls. The failure mechanism of sheathing-to-stud connections with double-layer wallboards is first analysed, and a method for determining those connections’ shear properties is proposed. Numerical models of RCFS shear walls are then established and analysed. Based on simulated results that have been fully validated by previous test results, an equivalent method for perforated RCFS shear walls is proposed. Finally, the application of the improved fastener-based modelling method to mid-rise RCFS shear walls is verified. The following results were obtained. (1) The simulated load-displacement curves can fully reflect shear wall hysteretic characteristics; moreover, the relative errors between the simulated and test results are within 14.2%. (2) The equivalent method that simplifies the wall segment over an opening as a linear elastic beam is applicable in the case of 1.5 < b/d (i.e., the ratio of the opening width to the depth of the wall segment over the opening) ≤5.0. (3) The improved fastener-based modelling method can be used to effectively predict the lateral performance of mid-rise RCFS shear walls.


Sign in / Sign up

Export Citation Format

Share Document